Skip to main content

Species Characterisation from Hair of Protected Mammals: Comparison of Molecular Methods

  • Chapter
  • First Online:
Book cover DNA Fingerprinting: Advancements and Future Endeavors

Abstract

Human interference has increased exploitation of the wildlife subsequently leading to their extinction. India being a mega-biodiversity nation faces most of the heat due to rampant poaching and growing illegal wildlife trade. Hence it is very crucial to develop techniques which can characterise the species from artefacts seized under the wildlife laws. In this regard, keratin protein possesses a huge promise for its utility in species designation. Most of the land mammals produce keratin in either of the two forms, i.e. hair keratin or claw, bill, nail, hoof, etc. Keratins are considered to be the most heterogenous types of proteins after immunoglobulins due to their multiple gene loci coding. Thus, as synthesis of keratins is under genetic control and they are known to be polymorphic, the analysis of these proteins can be used for species identification; differentiating varieties, species, subspecies and even breeds; and perhaps even individualisation. In this chapter, the hair keratin protein of 20 selected artiodactyls species has been characterised to study their usability in species designation as well as application in wildlife forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akasaki T, Yanagimoto T, Yamakami K, Tomonaga H, Sato S (2006) Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (Order Gadiformes) products. J Food Sci 71:190–195

    Article  Google Scholar 

  2. Annon (1996) Establishment of wildlife forensic capacity at wildlife Institute of India. WII-US-FWS project report. Wildlife Institute of India, Dehradun

    Google Scholar 

  3. Bartlett SE, Davidson WS (1991) Identification of Thunnus Tuna species by the polymerase chain reaction and direct sequence analysis of their mitochondrial cytochrome b genes. Can J Fish Aquat Sci 48:309–317

    Article  CAS  Google Scholar 

  4. Bartlett SE, Davidson WS (1992) FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin ofbiological specimens. Biotechniques 12:408–411

    CAS  PubMed  Google Scholar 

  5. Block RJ (1951) Chemical classification of keratins. Ann N Y Acad Sci 53:608–612

    Article  CAS  Google Scholar 

  6. Bolstein D, White DL, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–333

    Google Scholar 

  7. Budowle B, Acton RT (1981) A technique for the detection of variable electrophoretic patters of hair proteins. Electrophoresis 2:333–334

    Article  CAS  Google Scholar 

  8. Butler DJ, Deforest P-R, Koblinsky L (1990) The use of isoelectric focusing to identify Rhinoceros keratins. J Forensic Sci 35(2):336–344

    Article  CAS  Google Scholar 

  9. Carracedo A, Concheiro L, Requena I (1985) The isoelectric focusing of keratins in hair followed by silver staining. Forensic Sci Int 27:237–245

    Article  Google Scholar 

  10. Carracedo A, Prieto JM, Concheiro L, Estefania J (1987) Isoelectric focusing patterns of mammalian keratin. J Forensic Sci 32:93–94

    Article  CAS  Google Scholar 

  11. Carracedo A, Andrade-Vide C, Rodriguez-Calvo MS, Lareis MV (1988) Fast isoelectric focusing of some polymorphic proteins and enzymes in miniaturized gels using an automated system. J Forensic Sci 33(6):1379–1384

    Article  CAS  Google Scholar 

  12. Carrera E, Garcia T, Cespedes A, Gonzalez I, Fernandez A, Hernandez PE, Martin R (1999) Salmon and trout analysis by PCR-RFLP for identity authentication. J Food Sci 64:410–413

    Article  CAS  Google Scholar 

  13. Chakraborty A, Aranishi F, Iwatsuki Y (2005) Molecular identification of hairtail species (Pisces: Trichiuridae) based on PCR-RFLP analysis of the mitochondrial 16S rRNA gene. J Appl Genet 46(4):381–385

    PubMed  Google Scholar 

  14. Chan A, Chiang L-P, Hapuarachchi HC, Tan C-H, Pang S-C, Lee R, Lee K-S, Ng L-C, Lam-Phua S-G (2014) DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors 7(1):569. https://doi.org/10.1186/s13071-014-0569-4

  15. Dey SC (1996) Wildlife trade: global perspective and the Indian scenario. Cent Bureau Investig Bull 4:6–8

    Google Scholar 

  16. Domingo-Roura X, Marmi J, Ferrando A, Lopez-Giraldez F, McDonald DW, Jansman HAH (2006) Badger hair in shaving brushes comes from protected Eurasian badgers. Biol Conserv 128:425–430

    Article  Google Scholar 

  17. Espinoza EO, Baker BW, Moores TD, Voin D (2010) Forensic identification of elephant and giraffe hair artifacts using HATR FTIR spectroscopy and discriminant analysis. Endanger Species Res 9:239–246

    Article  Google Scholar 

  18. Fairbrother KS, Hopwood AJ, Lockley AK, Bardsley RG (1998) Meat speciation by restriction fragment length polymorphism analysis using ά- actin cCNA probe. Meat Sci 50:105–114

    Article  CAS  Google Scholar 

  19. Folin M, Contiero E (1996a) Electrophoretic analysis of mammalian keratins. Anthropol Anz 54:331–339

    CAS  PubMed  Google Scholar 

  20. Folin M, Contiero E (1996b) Electrophoretic analysis of non-human primates hair keratin. Forensic Sci Int 83(3):191–199

    Article  CAS  Google Scholar 

  21. Gillespie JM, Marshall RC (1977) Proteins of the hard keratin of echidna, hedgehog, rabbit, ox and man. Aust J Biol Sci 30:401–409

    Article  CAS  Google Scholar 

  22. Girish PS, Anjaneyelu ASR, Visvas KN, Shivakumar BM, Anand M (2004) Sequence analysis of mitochondrial 12s rRNA gene can identify meat species. Meat Sci 66:551–556

    Article  CAS  Google Scholar 

  23. Girish PS, Anjaneyelu ASR, Visvas KN, Shivakumar BM, Anand M, Patel M (2005) Meat species identification by polymerase chain reaction-restriction fragment length polymorphism of mitochondrial 12s rRNA gene. Meat Sci 70:107–112

    Article  CAS  Google Scholar 

  24. Graffy EA, Foran DR (2005) A simplified method for mitochondrial DNA extraction from head hair shafts. J Forensic Sci 50:1–4

    Article  Google Scholar 

  25. Guha S, Kashyap VK (2005) Development of novel heminested PCR assays based on mitochondrial 16S rRNA gene for identification of seven pecora species. BMC Genet 6:42

    Article  Google Scholar 

  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  27. Harris H (1969) Genes and enzymes. Proc R Soc (Biology) 174:1–31

    Article  CAS  Google Scholar 

  28. Higuchi R, Beroldingen CHV, Sensabaugh GF, Erlich HA (1998) DNA typing from single hairs. Nature 332:543–546

    Article  Google Scholar 

  29. Indian Wildlife (Protection) Act-1972. (with amendments) a hand guide with case law and commentaries. Natraj Publishers, Dehradun, pp 1–215

    Google Scholar 

  30. Judd RC (1996) SDS–Polyaccrylamide gel electrophoresis of peptides. In: Walker JM (ed) The protein protocols handbook. Humana Press, New Jersey

    Chapter  Google Scholar 

  31. Khamnamtong B, Klinbunga S, Menasveta P (2005) Species identification of five Penaeid shrimps using PCR-RFLP and SSCP analyses of 16S ribosomal DNA. J Biochem Mol Biol 38(4):491–499

    CAS  PubMed  Google Scholar 

  32. Kocher TD, Thomas WK, Meyer A, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Baceriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  34. Lee JC, Tsai LC, Yang C, Huang LH, Linacre A, Hsieh HM (2006) DNA profiling of Shahtoosh. Electrophoresis 27:3359–3362

    Article  CAS  Google Scholar 

  35. Linacre A, Lee JC (2004) Species determination: the role and use of the cytochrome B gene. Methods Mol Biol 297:45–52

    Google Scholar 

  36. Malisa A, Gwakisa P, Balthazary S, Wasser S, Mutayoba B (2005) Species and gender differentiation between andamong domestic and wild animals using mitochondrial and sex-linked DNA markers. Afr J Biotechnol 4:1269–1274

    CAS  Google Scholar 

  37. Mani MS (1974) Ecology and biogeography in India. Dr. Junk Publisher, The Hague, p 727

    Book  Google Scholar 

  38. Marshall RC (1981) Analysis of the protein form single wool fiber by two dimensional polyacrylamide gel electrophoresis. Text Res J 51:106–108

    Article  CAS  Google Scholar 

  39. Marshall RC (1983) Characterization of the protein of human hair and nail by electrophoresis. J Investig Dermatol 80:519–524

    Article  CAS  Google Scholar 

  40. Marshall RC, Gillespie JM (1982) Comparison of samples of human hair by two-dimensional electrophoresis. J Forensic Sci Soc 22(4):377–385

    Article  CAS  Google Scholar 

  41. Marshall RC, Gillespie JM, Klement V (1985) Methods and future prospects for forensic identification of hairs by electrophoresis. J Forensic Sci Soc 25(1):57–66

    Article  CAS  Google Scholar 

  42. Meyer R, Hofelein C, Luthy J, Candrian U (1995) Polymerase chain reaction – restriction fragment length polymorphism analysis: a simple method for species identification in food. J AOAC Int 78:1542–1551

    CAS  PubMed  Google Scholar 

  43. Mitchell SE, Cockburn AF, Seawright JA (1993) The mitochondrial genome of Anopheles quadrimaculatus species a: complete nucleotide and organization. Genome 36:1058–1073

    Article  CAS  Google Scholar 

  44. Mukherjee SK (1996) Some thoughts on wildlife trade. Cheetal 2:30–33

    Google Scholar 

  45. Nameer PO (2000) Checklist of Indian mammals. Kerala State Forest Department and Kerala Agricultural University, pp 1–90

    Google Scholar 

  46. Oakely BR (1980) A simplified ultra sensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363

    Article  Google Scholar 

  47. Paolella S, Bencivenni M, Lambertini F, Prandi B, Faccini A, Tonetti C, Vineis C, Sforza S (2013) Identification and quantification of different species in animal fibres by LC/ESI-MS analysis of keratin-derived proteolytic peptides. J Mass Spectrom 48(8):919–926

    Article  CAS  Google Scholar 

  48. Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28

    Article  CAS  Google Scholar 

  49. Pepe T, Trotta M, Di Marco I, Cennamo P, Anastasio A, Cortesi ML (2005) Mitochondrial cytochrome b DNA sequence variations: an approach to fish species identification in processed fish products. J Food Prot 68:421–425

    Article  CAS  Google Scholar 

  50. Pfeiffer I, Volkel I, Taubert H, Brenig B (2004) Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification. Forensic Sci Int 141(2–3):149–151

    Article  CAS  Google Scholar 

  51. Pilli E, Casamassima R, Vai S, Virgili A, Barni F, D’Errico G, Berti A, Lago G, Caramelli D (2014) Pet fur or fake fur? A forensic approach. Investig Genet 5(1):7

    Article  CAS  Google Scholar 

  52. Rodriguez-calvo MS, Carraceelo A, Muoz I, concheiro L (1992) Isoelectric focusing of human hair keratin: correlation with SDS-PAGE and effect of cosmetic treatment. J Forensic Sci 37(2):425–431

    Article  CAS  Google Scholar 

  53. Sahajpal V, Goyal SP (2005) The use of SDS-PAGE for identification of Shahtoosh and other wools. Proceedings of the 11th international wool research conference, University of Leeds, U.K

    Google Scholar 

  54. Sahajpal V, Goyal SP (2010) Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): a case study of small Indian civet (Viverricula indica). Sci Justice 50(2):94–97

    Article  CAS  Google Scholar 

  55. Sahajpal V, Singh K, Goyal SP, Thakur V (2009) Dealing wildlife offences in India: role of the hair as physical evidence. Int J Trichology 1(1):18

    Article  Google Scholar 

  56. Sahajpal V, Goyal SP, Thakar MK (2012) Forensic examination of hair of protected Indian wildlife species: microscopy, protein and DNA methods. Lambert Academic Publishing, Germany, pp 1–256

    Google Scholar 

  57. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–397

    Article  CAS  Google Scholar 

  58. Shields GF, Kocher TD (1991) Phylogenetic relationships of north American ursids based on analysis of mitochondrial DNA. Evolution 45:218–221

    Article  CAS  Google Scholar 

  59. Sironi M, Bandi C, Novati S, Scaglia M (1997) A PCR-RFLP method for the detection and species identification of human microsporidia. Parasitologia 39(4):437–439

    CAS  Google Scholar 

  60. Switzer CR, Merril CR, Shilfrin S (1979) Anal Biochem 98:23–237

    Article  Google Scholar 

  61. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  62. Verma SK, Singh L (2003) Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol 3:28–31

    Article  CAS  Google Scholar 

  63. Wolf C, Rentsch J, Hübner P (1999) PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem 47(4):1350–1355

    Article  CAS  Google Scholar 

  64. Zafarina Z, Panneerchelvam S (2009) Analysis of hair samples using microscopical and molecular techniques to ascertain claims of rare animal species. Malays J Med Sci: MJMS 16(3):35–40

    Google Scholar 

Download references

Ethical Permission

The research work was carried out as Ph.D work at the Wildlife Institute of India, and it was part of the mandate of wildlife forensic lab/cell of the Wildlife Institute of India to create protocols for the species identification from wildlife parts and artefacts in illegal trade. All the samples used were from the repository of wildlife samples established at wildlife forensic lab under the mandate.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahajpal, V., Goyal, S.P. (2018). Species Characterisation from Hair of Protected Mammals: Comparison of Molecular Methods. In: Dash, H., Shrivastava, P., Mohapatra, B., Das, S. (eds) DNA Fingerprinting: Advancements and Future Endeavors. Springer, Singapore. https://doi.org/10.1007/978-981-13-1583-1_6

Download citation

Publish with us

Policies and ethics