Skip to main content

Future of Enzymology: An Appraisal

  • Chapter
  • First Online:
ENZYMES: Catalysis, Kinetics and Mechanisms
  • 133k Accesses

Abstract

There can be no doubt that study of enzymes will continue to occupy the prime position in modern biology (and chemistry!). This much is amply obvious from each and every context and examples that we have come across in the preceding chapters. The study of enzymes in isolation, most often in purified form, has occupied much of the time in this field. However, as we have seen in the last chapter, the importance of understanding enzyme function in vivo is very much appreciated now; this will form one of the frontiers in enzymology. Present emphasis on systems biology is a pointer in this direction. Enzymes in sequence, in combination with other enzymes and other cellular components, bring in interesting features often not manifested by an enzyme in isolation – coupled reactions, regulatory networks, and distributed control of metabolism are some of them.

If we wish to catch up with nature we shall need to use the same methods as she does, and I can foresee a time in which physiological chemistry will not only make greater use of natural enzymes but will actually resort to creating synthetic ones.

–Emil Fischer, 1902 Nobel Lecture

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

General

  • Editorial (2009) closing in on catalysis. Nat Chem Biol 5:515

    Article  CAS  Google Scholar 

  • Clarke CF, Allan CM (2015) Unexpected role for vitamin B2. Nature 522:427–428

    Article  CAS  Google Scholar 

  • Herschlag D, Natarajan A (2013) Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 52:2050–2067

    Article  CAS  Google Scholar 

  • Ito T, Yokoyama S (2010) Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature 467:612–616

    Article  CAS  Google Scholar 

  • Ohashi M, Liu F, Hai Y, Chen M, Tang M, Yang Z, Sato M, Watanabe K, Houk KN, Tang Y (2017) SAM-dependent enzyme-catalyzed pericyclic reactions in natural product biosynthesis. Nature 549:502–506

    Article  CAS  Google Scholar 

  • Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2015) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512

    Article  CAS  Google Scholar 

  • Zhao Q, Wang M, Xu D, Zhang Q, Liu W (2015) Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature 518:115–119

    Article  CAS  Google Scholar 

Transition State Analysis and Computational Enzymology

  • Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  CAS  Google Scholar 

  • Schramm VL (2013) Transition states, analogues, and drug development. ACS Chem Biol 8:71–81

    Article  CAS  Google Scholar 

  • Warshel A (2014) Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). Angew Chem Int Ed 53:10020–10031

    Article  CAS  Google Scholar 

Single Molecule Enzymology

  • English BP, Min W, van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2:87–94

    Article  CAS  Google Scholar 

  • Min W, English BP, Luo G, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: lessons from single-molecule studies. Acc Chem Res 38:923–931

    Article  CAS  Google Scholar 

  • Smiley RD, Hammes GG (2006) Single molecule studies of enzyme mechanisms. Chem Rev 106:3080–3094

    Article  CAS  Google Scholar 

  • Walter NG (2006) Michaelis-Menten is dead, long live Michelis-Menten! Nat Chem Biol 2:66–67

    Article  CAS  Google Scholar 

Structure-Function Dissection of Enzyme Catalysis

  • Atkins JF, Gesteland R (2002) The 22nd amino acid. Science 296:1409–1410

    Article  CAS  Google Scholar 

  • Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222

    Article  CAS  Google Scholar 

  • Changeux J-P (2013) 50 years of allosteric interactions: the twists and turns of the models. Nat Rev Mol Cell Biol 14:819–829

    Article  CAS  Google Scholar 

  • Clarke AR, Atkinson T, Holbrook JJ (1989) From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci 14:101–105 Part II, Trends Biochem Sci, 14:145-148 (1989)

    Article  CAS  Google Scholar 

  • Cuesta-Seijo JA, Borchert MS, Navarro-Poulsen J-C, Schnorr KM, Mortensen SB, Leggio LL (2011) Structure of a dimeric fungal α-type carbonic anhydrase. FEBS Lett 585:1042–1048

    Article  CAS  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    Article  CAS  Google Scholar 

  • Dhalla AM, Li B, Alibhai ME, Yost KJ, Hemmingsen JM, Atkins WM, Schineller J, Villafranca JJ (1994) Regeneration of catalytic activity of glutamine synthetase mutants by chemical activation: exploration of the role of arginines 339 and 359 in activity. Protein Sci 3:476–481

    Article  CAS  Google Scholar 

  • Earnhardt JN, Wright SK, Qian M, Tu C, Laipis PJ, Viola RE, Silverman DN (1999) Introduction of histidine analogs leads to enhanced proton transfer in carbonic anhydrase V. Arch Biochem Biophys 361:264–270

    Article  CAS  Google Scholar 

  • Freire E (2000) Can allosteric regulation be predicted from structure? Proc Natl Acad Sci U S A 97:11680–11682

    Article  CAS  Google Scholar 

  • Gerlt JA (2017) Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56:4293–4308

    Article  CAS  Google Scholar 

  • Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D, Imker HJ, Jacobson MP, Minor W, C., Poulter D, Raushel FM, Sali A, Shoichet BK, Sweedler JV (2011) The enzyme function initiative. Biochemistry 50:9950–9962

    Article  CAS  Google Scholar 

  • Hai Y, Kerkhoven EJ, Barrett MP, Christianson DW (2015) Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster. Biochemistry 54:458–471

    Article  CAS  Google Scholar 

  • Hardy JA, Wells JA (2004) Searching for new allosteric sites in enzymes. Curr Opin Struct Biol 14:706–715

    Article  CAS  Google Scholar 

  • Hendrickson TL, de Crecy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    Article  CAS  Google Scholar 

  • Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29:263–279

    Article  CAS  Google Scholar 

  • Larion M, Salinas RK, Bruschweiler-Li L, Miller BG, Bruschweiler R (2012) Order–disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol 10(12):e1001452

    Article  CAS  Google Scholar 

  • Lopez V, Alarcon R, Orellana MS, Enrıquez P, Uribe E, Martınez J, Carvajal N (2005) Insights into the interaction of human arginase II with substrate and manganese ions by site-directed mutagenesis and kinetic studies: alteration of substrate specificity by replacement of Asn149 with Asp. FEBS J 272:4540–4548

    Article  CAS  Google Scholar 

  • Miller C (2007) Pretty structures, but what about the data? Science 315:459

    Article  CAS  Google Scholar 

  • Moon H-J, Tiwari MK, Singh R, Kang YC, Lee J-K (2012) Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase. Appl Environ Microbiol 78:3079–3086

    Article  CAS  Google Scholar 

  • Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    Article  CAS  Google Scholar 

  • Nickbarg EB, Davenport RC, Petsko GA, Knowles JR (1988) Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Biochemistry 27:5948–5960

    Article  CAS  Google Scholar 

  • Ragsdale SW (2011) How two amino acids become one. Nature 471:583–584

    Article  CAS  Google Scholar 

  • Ramanathan A, Agarwal PK (2011) Evolutionarily conserved linkage between Enzyme Fold, Flexibility, and Catalysis. PLoS Biol 9:e1001193

    Article  CAS  Google Scholar 

  • Reynolds KA, McLaughlin RN, Ranganathan R (2011) Hot spots for allosteric regulation on protein surfaces. Cell 147:1564–1575

    Article  CAS  Google Scholar 

  • Wagner CR, Benkovic SJ (1990) Site directed mutagenesis: a tool for enzyme mechanism dissection. Trends Biotechnol 8:263–270

    Article  CAS  Google Scholar 

  • Wilks HM, Hart KW, Feeney R, Dunn CR, Muirhead H, Chia WN, Barstow DA, Atkinson AR, Holbrook JJ (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242:1541–1544

    Article  CAS  Google Scholar 

  • Wlodawer A, Ericson JW (1993) Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 62:543–586

    Article  CAS  Google Scholar 

Designing Novel Catalysts

  • Abelson J (2017) The discovery of catalytic RNA. Nat Rev Mol Cell Biol 18(11):653–653

    Article  CAS  Google Scholar 

  • Baum DA, Silverman SK (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 65:2156–2174

    Article  CAS  Google Scholar 

  • Benkovic SJ (1992) Catalytic antibodies. Annu Rev Biochem 61:29–54

    Article  CAS  Google Scholar 

  • Bjerre J, Rousseau C, Marinescu L, Bols M (2008) Artificial enzymes, “chemzymes”: current state and perspectives. Appl Microbiol Biotechnol 81:1–11

    Article  CAS  Google Scholar 

  • Breslow R (2005) Artificial enzymes. Wiley-VCH Wienheim

    Google Scholar 

  • Doudna JA, Lorsch JR (2005) Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 12:395–402

    Article  CAS  Google Scholar 

  • Famulok M (2004) RNAs turn on in tandem. Science 306:233–234

    Article  CAS  Google Scholar 

  • Hilvert D (2000) Critical analysis of antibody catalysis. Annu Rev Biochem 69:751–793

    Article  CAS  Google Scholar 

  • MacMillan DWC (2008) The advent and development of organocatalysis. Nature 455:304–308

    Article  CAS  Google Scholar 

  • Narlikar G, Herschlag D (1997) Mechanistic aspects of enzyme catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem 66:19–59

    Article  CAS  Google Scholar 

  • Penning TM, Jez JM (2001) Enzyme redesign. Chem Rev 101:3027–3046

    Article  CAS  Google Scholar 

  • Reitman ZJ, Choi BD, Spasojevic I, Bigner DD, Sampson JH, Yan H (2012) Enzyme redesign guided by cancer-derived IDH1 mutations. Nat Chem Biol 8:887–889

    Article  CAS  Google Scholar 

  • Ren X, Gao S, You D, Huang H, Liu Z, Mu Y, Liu J, Zhang Y, Yan G, Luo G, Yang T, Shen J (2001) Cloning and expression of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency. Biochem J 359:369–374

    Article  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–1242

    Article  CAS  Google Scholar 

  • Sharkey MA, Engel PC (2009) Modular coenzyme specificity; a domain swapped chimera of glutamate dehydrogenase. Proteins 77:268–278

    Article  CAS  Google Scholar 

  • Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, Weeks KM, Herdewijn P, Holliger P (2015) Catalysts from synthetic genetic polymers. Nature 518:427-430

    Article  CAS  Google Scholar 

  • Traut TW (2007) Allosteric Regulatory Enzymes. Springer Science & Business Media, Boston

    Google Scholar 

  • Tuerk C, Gold L (1990) Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  • Weigand JE, Suess B (2009) Aptamers and riboswitches: perspectives in biotechnology. Appl Microbiol Biotechnol 85:229–236

    Article  CAS  Google Scholar 

  • Wilson TJ, Lilley DMJ (2009) The evolution of ribozyme chemistry. Science 323:1436–1438

    Article  CAS  Google Scholar 

  • Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–28

    Article  CAS  Google Scholar 

  • Zuckermann RN, Schultz PG (1988) Hybrid sequence-selective ribonuclease S. J Am Chem Soc 110:6592–6594

    Article  CAS  Google Scholar 

Enzymes Made to Order

  • Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4410

    Article  CAS  Google Scholar 

  • Blomberg R, Kries H, Pinkas DM, Mittl PRE, Grutter MG, Privett HK, Mayo SL, Hilvert D (2013) Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503:418–421

    Article  CAS  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  Google Scholar 

  • Hayden EC (2008) Designer Debacle – News Feature. Nature 453:275–278

    Article  CAS  Google Scholar 

  • Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    Article  CAS  Google Scholar 

  • Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537:661–665

    Article  CAS  Google Scholar 

  • Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF III, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  CAS  Google Scholar 

  • Joerger AC, Mayer S, Fersht AR (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity. Proc Natl Acad Sci U S A 100:5694–5699

    Article  CAS  Google Scholar 

  • Johnsson K, Allemann RK, Widmer H, Benner SA (1993) Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 365:530–532

    Article  CAS  Google Scholar 

  • Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    Article  CAS  Google Scholar 

  • Menger FM, Ladika M (1987) Origin of rate accelerations in an enzyme model: the p-nitrophenyl ester syndrome. J Am Chem Soc 109:3145–3146

    Article  CAS  Google Scholar 

  • Nanda V (2008) Do-it-yourself enzymes. Nat Chem Biol 4:273–275

    Article  CAS  Google Scholar 

  • Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394

    Article  CAS  Google Scholar 

  • Park H-S, Nam S-H, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim H-S (2006) Design and evolution of new catalytic activity with an existing protein scaffold. Science 311:535–538

    Article  CAS  Google Scholar 

  • Percival Zhang Y-H, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Reetz M (2016) Directed evolution of selective enzymes: catalysts for organic chemistry and biotechnology. Wiley, Weinheim

    Book  Google Scholar 

  • Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6(5):e19230

    Article  CAS  Google Scholar 

  • Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St JL, Clair JLG, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313

    Article  CAS  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Punekar, N.S. (2018). Future of Enzymology: An Appraisal. In: ENZYMES: Catalysis, Kinetics and Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-0785-0_39

Download citation

Publish with us

Policies and ethics