Skip to main content

Urban Drainage System Design Minimizing System Cost Constrained to Failure Depth and Duration Under Flooding Events

  • Conference paper
  • First Online:
Harmony Search and Nature Inspired Optimization Algorithms

Abstract

Recently, property damages and loss of life caused by natural disasters are increasing in urban area because of local torrential rainfall, which is mostly originated from recent global climate change. Acceleration of population concentration and increase of impervious area from urbanization worsen the situation. Therefore, it is highly important to consider system resilience which is the system’s ability to prepare, react, and recover from a failure (e.g., flooding). This study proposes a resilience-constrained optimal design model of urban drainage network, which minimizes total system cost while satisfying predefined failure depth and duration (i.e., resilience measures). Optimal layout and pipe sizes are identified by the proposed model comprised of Harmony Search Algorithm (HSA) for optimization and Storm Water Management Model (SWMM) for dynamic hydrology-hydraulic simulation. The proposed model is applied to the design of Gasan urban drainage system in Seoul, Korea, and the resilience-based design obtained is compared to the least-cost design obtained with no constraint on the resilience measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mays, L.W., Yen, B.C.: Optimal cost design of branched sewer systems. Water Resour. Res. 11(1), 37–47 (1975)

    Article  Google Scholar 

  2. Mays, L.W., Wenzel, H.G.: A serial DDDP approach for optimal design of multi-level branching storm sewer systems. Water Resour. Res. 12(5), 913–917 (1976)

    Article  Google Scholar 

  3. Lui, G., Matthew, R.G.S.: New approach for optimization of urban drainage systems. J. Environ. Eng. 116(5), 927–944 (1990)

    Article  Google Scholar 

  4. Tekeli, S., Belkaya, H.: Computerized layout generation for sanitary sewers. J. Water Resour. Planning Manage. 112(4), 500–515 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (13AWMP-B066744-01) from the Advanced Water Management Research Program funded by the Ministry of Land, Infrastructure, and Transport of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Hoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwon, S.H., Jung, D., Kim, J.H. (2019). Urban Drainage System Design Minimizing System Cost Constrained to Failure Depth and Duration Under Flooding Events. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol 741. Springer, Singapore. https://doi.org/10.1007/978-981-13-0761-4_16

Download citation

Publish with us

Policies and ethics