Skip to main content

Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging

  • Chapter
  • First Online:
Advanced Optical Methods for Brain Imaging

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 5))

Abstract

Imaging the brain circuitry in intact, three-dimensional context has been challenging due to the physical constraints including light scattering and slow molecular diffusion inside biological tissues. Over the past few years, advanced clearing and labeling methods—broadly defined as ‘chemical processing’ of brain tissues—have emerged as promising strategies for multiplexed, large-scale imaging of brains. Tissue clearing techniques improve the accessibility of light and molecular probes, allowing for volumetric imaging without sectioning. Multiplexed labeling and signal amplification strategies enable precise detection, localization, and sometimes quantification of various biomolecules (e.g., RNA, protein) within a single tissue. The newly emerging, size-modulating clearing techniques increase imaging speed (via size reduction) or effective imaging resolution (via expansion) while rendering the samples transparent. Here we review the recent progress in the chemical techniques for brain tissue processing and overview the underlying principles for each technique. We further discuss important challenges and suggest directions for the future chemical tissue-processing techniques for high-resolution, large-scale brain imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Agasti, Y. Wang, F. Schueder, A. Sukumar, R. Jungmann, P. Yin, DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem. Sci. 8, 3080–3091 (2017)

    Article  Google Scholar 

  2. M.B. Ahrens, M.B. Orger, D.N. Robson, J.M. Li, P.J. Keller, Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013)

    Article  Google Scholar 

  3. M.M. Alvarez, J. Aizenberg, M. Analoui, A.M. Andrews, G. Bisker, E.S. Boyden, R.D. Kamm, J.M. Karp, D.J. Mooney, R. Oklu et al., Emerging trends in micro- and nanoscale technologies in medicine: from basic discoveries to translation. ACS Nano 11, 5195–5214 (2017)

    Article  Google Scholar 

  4. F. Amat, B. Höckendorf, Y. Wan, W.C. Lemon, K. McDole, P.J. Keller, Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10, 1679–1696 (2015)

    Article  Google Scholar 

  5. Y. Aoyagi, R. Kawakami, H. Osanai, T. Hibi, T. Nemoto, A rapid optical clearing protocol using 2,2′-thiodiethanol for microscopic observation of fixed mouse brain. PLoS ONE 10, e0116280 (2015)

    Article  Google Scholar 

  6. K. Becker, N. Jährling, S. Saghafi, R. Weiler, H.-U. Dodt, Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE 7, e33916 (2012)

    Article  Google Scholar 

  7. B.J. Beliveau, E.F. Joyce, N. Apostolopoulos, F. Yilmaz, C.Y. Fonseka, R.B. McCole, Y. Chang, J.B. Li, T.N. Senaratne, B.R. Williams et al., Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl. Acad. Sci. 109, 21301–21306 (2012)

    Article  Google Scholar 

  8. M. Belle, D. Godefroy, G. Couly, S.A. Malone, F. Collier, P. Giacobini, A. Chédotal, Tridimensional visualization and analysis of early human development. Cell 169, 161–173 (2017)

    Article  Google Scholar 

  9. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  Google Scholar 

  10. S. Bi, M. Chen, X. Jia, Y. Dong, Z. Wang, Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. 54, 8144–8148 (2015)

    Article  Google Scholar 

  11. J. Binding, J.B. Arous, J.-F. Léger, S. Gigan, C. Boccara, L. Bourdieu, Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt. Express 19, 4833–4847 (2011)

    Article  Google Scholar 

  12. F. Birey, J. Andersen, C.D. Makinson, S. Islam, W. Wei, N. Huber, H.C. Fan, K.R.C. Metzler, G. Panagiotakos, N. Thom et al., Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017)

    Article  Google Scholar 

  13. F.P. Bolin, L.E. Preuss, R.C. Taylor, R.J. Ference, Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 28, 2297–2303 (1989)

    Article  Google Scholar 

  14. K.S. Burke, K.A. Antilla, D.A. Tirrell, A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome–mRNA interactions in single cells. ACS Cent. Sci. 3, 425–433 (2017)

    Article  Google Scholar 

  15. R.G. Canter, H. Choi, J. Wang, L.A. Watson, C.G. Yao, F. Abdurrob, S.M. Bousleiman, I. Delalle, K. Chung, L.-H. Tsai, 3D Mapping Reveals Network-specific Amyloid Progression and Subcortical Susceptibility (2017). bioRxiv 116244

    Google Scholar 

  16. J.-B. Chang, F. Chen, Y.-G. Yoon, E.E. Jung, H. Babcock, J.S. Kang, S. Asano, H.-J. Suk, N. Pak, P.W. Tillberg et al., Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017)

    Article  Google Scholar 

  17. B.-C. Chen, W.R. Legant, K. Wang, L. Shao, D.E. Milkie, M.W. Davidson, C. Janetopoulos, X.S. Wu, J.A. Hammer, Z. Liu et al., Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014)

    Article  Google Scholar 

  18. F. Chen, P.W. Tillberg, E.S. Boyden, Expansion microscopy. Science 347, 543–548 (2015)

    Article  Google Scholar 

  19. F. Chen, A.T. Wassie, A.J. Cote, A. Sinha, S. Alon, S. Asano, E.R. Daugharthy, J.-B. Chang, A. Marblestone, G.M. Church et al., Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016)

    Article  Google Scholar 

  20. K.H. Chen, A.N. Boettiger, J.R. Moffitt, S. Wang, X. Zhuang, Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015)

    Article  Google Scholar 

  21. A.-S. Chiang, W.-Y. Lin, H.-P. Liu, M.A. Pszczolkowski, T.-F. Fu, S.-L. Chiu, G.L. Holbrook, Insect NMDA receptors mediate juvenile hormone biosynthesis. Proc. Natl. Acad. Sci. 99, 37–42 (2002)

    Article  Google Scholar 

  22. H.M.T. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, N.A. Pierce, Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010)

    Article  Google Scholar 

  23. H.M.T. Choi, V.A. Beck, N.A. Pierce, Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284–4294 (2014)

    Article  Google Scholar 

  24. T.J. Chozinski, A.R. Halpern, H. Okawa, H.-J. Kim, G.J. Tremel, R.O.L. Wong, J.C. Vaughan, Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016)

    Article  Google Scholar 

  25. K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A.S. Andalman, T.J. Davidson, J.J. Mirzabekov, K.A. Zalocusky, J. Mattis, A.K. Denisin et al., Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013)

    Article  Google Scholar 

  26. B.H. Cipriano, S.J. Banik, R. Sharma, D. Rumore, W. Hwang, R.M. Briber, S.R. Raghavan, Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47, 4445–4452 (2014)

    Article  Google Scholar 

  27. A.F. Coskun, L. Cai, Dense transcript profiling in single cells by image correlation decoding. Nat. Methods 13, 657–660 (2016)

    Article  Google Scholar 

  28. I. Costantini, J.-P. Ghobril, A.P. Di Giovanna, A.L.A. Mascaro, L. Silvestri, M.C. Müllenbroich, L. Onofri, V. Conti, F. Vanzi, L. Sacconi et al., A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015)

    Article  Google Scholar 

  29. J.R. Crittenden, P.W. Tillberg, M.H. Riad, Y. Shima, C.R. Gerfen, J. Curry, D.E. Housman, S.B. Nelson, E.S. Boyden, A.M. Graybiel, Striosome–dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc. Natl. Acad. Sci. 113, 11318–11323 (2016)

    Article  Google Scholar 

  30. N. Crosetto, M. Bienko, A. van Oudenaarden, Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2014)

    Article  Google Scholar 

  31. Y. Cui, X. Wang, W. Ren, J. Liu, J. Irudayaraj, Optical clearing delivers ultrasensitive hyperspectral dark-field imaging for single-cell evaluation. ACS Nano 10, 3132–3143 (2016)

    Article  Google Scholar 

  32. F.M. Davis, B. Lloyd-Lewis, O.B. Harris, S. Kozar, D.J. Winton, L. Muresan, C.J. Watson, Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat. Commun. 7, 13053 (2016)

    Article  Google Scholar 

  33. J.A. Dent, A.G. Polson, M.W. Klymkowsky, A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 105, 61–74 (1989)

    Google Scholar 

  34. B.E. Deverman, P.L. Pravdo, B.P. Simpson, S.R. Kumar, K.Y. Chan, A. Banerjee, W.-L. Wu, B. Yang, N. Huber, S.P. Pasca et al., Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016)

    Article  Google Scholar 

  35. R.S. Díaz, J. Monreal, P. Regueiro, M. Lucas, Preparation of a protein-free total brain white matter lipid fraction: characterization of liposomes. J. Neurosci. Res. 31, 136–145 (1992)

    Article  Google Scholar 

  36. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C.P. Mauch, K. Deininger, J.M. Deussing, M. Eder, W. Zieglgänsberger, K. Becker, Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007)

    Article  Google Scholar 

  37. A. Ertürk, F. Bradke, High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp. Neurol. 242, 57–64 (2013)

    Article  Google Scholar 

  38. A. Ertürk, K. Becker, N. Jährling, C.P. Mauch, C.D. Hojer, J.G. Egen, F. Hellal, F. Bradke, M. Sheng, H.-U. Dodt, Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012)

    Article  Google Scholar 

  39. A.M. Femino, F.S. Fay, K. Fogarty, R.H. Singer, Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998)

    Article  Google Scholar 

  40. I. Gaspar, F. Wippich, A. Ephrussi, Enzymatic production of single molecule FISH and RNA capture probes. RNA 23, 1582–1591 (2017)

    Google Scholar 

  41. R. Ghosh, W. Draper, J.M. Franklin, Q. Shi, J. Liphardt, A fluorogenic nanobody array tag for prolonged single molecule imaging in live cells (2017). bioRxiv 111690

    Google Scholar 

  42. H. Gong, I. Holcomb, A. Ooi, X. Wang, D. Majonis, M.A. Unger, R. Ramakrishnan, Simple method to prepare oligonucleotide-conjugated antibodies and its application in multiplex protein detection in single cells. Bioconjug. Chem. 27, 217–225 (2016)

    Article  Google Scholar 

  43. A.A. Grace, R. Llinás, Morphological artifacts induced in intracellularly stained neurons by dehydration: circumvention using rapid dimethyl sulfoxide clearing. Neuroscience 16, 461–475 (1985)

    Article  Google Scholar 

  44. A. Greenbaum, K.Y. Chan, T. Dobreva, D. Brown, D.H. Balani, R. Boyce, H.M. Kronenberg, H.J. McBride, V. Gradinaru, Bone CLARITY: clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl. Med. 9, eaah6518 (2017)

    Article  Google Scholar 

  45. J.B. Grimm, B.P. English, J. Chen, J.P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J.J. Macklin, D. Normanno, R.H. Singer et al., A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015)

    Article  Google Scholar 

  46. J.B. Grimm, B.P. English, H. Choi, A.K. Muthusamy, B.P. Mehl, P. Dong, T.A. Brown, J. Lippincott-Schwartz, Z. Liu, T. Lionnet et al., Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016)

    Article  Google Scholar 

  47. J.B. Grimm, A.K. Muthusamy, Y. Liang, T.A. Brown, W.C. Lemon, R. Patel, R. Lu, J.J. Macklin, P.J. Keller, N. Ji et al., A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017)

    Google Scholar 

  48. S.-M. Guo, R. Veneziano, S. Gordonov, L. Li, D. Park, A.B. Kulesa, P.C. Blainey, J.R. Cottrell, E.S. Boyden, M. Bathe, Multiplexed confocal and super-resolution fluorescence imaging of cytoskeletal and neuronal synapse proteins (2017). bioRxiv 111625

    Google Scholar 

  49. H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, A. Miyawaki, Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011)

    Article  Google Scholar 

  50. H. Hama, H. Hioki, K. Namiki, T. Hoshida, H. Kurokawa, F. Ishidate, T. Kaneko, T. Akagi, T. Saito, T. Saido et al., ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015)

    Article  Google Scholar 

  51. D. Hopwood, Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4, 267–303 (1972)

    Article  Google Scholar 

  52. B. Hou, D. Zhang, S. Zhao, M. Wei, Z. Yang, S. Wang, J. Wang, X. Zhang, B. Liu, L. Fan et al., Scalable and DiI-compatible optical clearance of the mammalian brain. Front. Neuroanat. 9, 19 (2015)

    Article  Google Scholar 

  53. L. Hua, R. Zhou, D. Thirumalai, B.J. Berne, Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. 105, 16928–16933 (2008)

    Article  Google Scholar 

  54. B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)

    Article  Google Scholar 

  55. S. Johnsen, E.A. Widder, The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199, 181–198 (1999)

    Article  Google Scholar 

  56. M.-T. Ke, S. Fujimoto, T. Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154–1161 (2013)

    Article  Google Scholar 

  57. M.-T. Ke, Y. Nakai, S. Fujimoto, R. Takayama, S. Yoshida, T.S. Kitajima, M. Sato, T. Imai, Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Rep. 14, 2718–2732 (2016)

    Article  Google Scholar 

  58. P.J. Keller, H.-U. Dodt, Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. 22, 138–143 (2012)

    Article  Google Scholar 

  59. P.J. Keller, M.B. Ahrens, J. Freeman, Light-sheet imaging for systems neuroscience. Nat. Methods 12, 27–29 (2015)

    Article  Google Scholar 

  60. S.-Y. Kim, J.H. Cho, E. Murray, N. Bakh, H. Choi, K. Ohn, L. Ruelas, A. Hubbert, M. McCue, S.L. Vassallo et al., Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc. Natl. Acad. Sci. 112, E6274–E6283 (2015)

    Article  Google Scholar 

  61. M.W. Klymkowsky, J. Hanken, Chapter 22 Whole-mount staining of xenopus and other vertebrates. Methods Cell Biol. 36, 419–441 (1991)

    Google Scholar 

  62. B. Koos, G. Cane, K. Grannas, L. Löf, L. Arngården, J. Heldin, C.-M. Clausson, A. Klaesson, M.K. Hirvonen, F.M.S. de Oliveira et al., Proximity-dependent initiation of hybridization chain reaction. Nat. Commun. 6, 7294 (2015)

    Article  Google Scholar 

  63. B.G. Kopek, M.G. Paez-Segala, G. Shtengel, K.A. Sochacki, M.G. Sun, Y. Wang, C.S. Xu, S.B. van Engelenburg, J.W. Taraska, L.L. Looger et al., Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat. Protoc. 12, 916–946 (2017)

    Article  Google Scholar 

  64. T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J.H. Cho, Y.-G. Park, V. Mangena, J. Chen, K. Chung, Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016)

    Article  Google Scholar 

  65. D. Kurihara, Y. Mizuta, Y. Sato, T. Higashiyama, ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142, 4168–4179 (2015)

    Article  Google Scholar 

  66. T. Kuwajima, A.A. Sitko, P. Bhansali, C. Jurgens, W. Guido, C. Mason, ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development 140, 1364–1368 (2013)

    Article  Google Scholar 

  67. H.M. Lai, W.-L. Ng, S.M. Gentleman, W. Wu, Chemical probes for visualizing intact animal and human brain tissue. Cell Chem. Biol. 24, 659–672 (2017)

    Article  Google Scholar 

  68. J.H. Lee, Quantitative approaches for investigating the spatial context of gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, e1369 (2017)

    Article  Google Scholar 

  69. E. Lee, H.J. Kim, W. Sun, See-through technology for biological tissue: 3-dimensional visualization of macromolecules. Int. Neurourol. J. 20, S15–S22 (2016)

    Article  Google Scholar 

  70. E.S. Lein, M.J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger, A. Bernard, A.F. Boe, M.S. Boguski, K.S. Brockway, E.J. Byrnes et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)

    Article  Google Scholar 

  71. T.N. Lerner, L. Ye, K. Deisseroth, Communication in neural circuits: tools, opportunities, and challenges. Cell 164, 1136–1150 (2016)

    Article  Google Scholar 

  72. T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-Lavigne, M. Flajolet, Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Rep. 16, 1138–1152 (2016)

    Article  Google Scholar 

  73. B. Lloyd-Lewis, F.M. Davis, O.B. Harris, J.R. Hitchcock, F.C. Lourenco, M. Pasche, C.J. Watson, Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 18, 127 (2016)

    Article  Google Scholar 

  74. A. Louveau, I. Smirnov, T.J. Keyes, J.D. Eccles, S.J. Rouhani, J.D. Peske, N.C. Derecki, D. Castle, J.W. Mandell, K.S. Lee et al., Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015)

    Article  Google Scholar 

  75. E. Lubeck, L. Cai, Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012)

    Article  Google Scholar 

  76. E. Lubeck, A.F. Coskun, T. Zhiyentayev, M. Ahmad, L. Cai, Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014)

    Article  Google Scholar 

  77. B. Migliori, M.S. Datta, M.C. Apak, R. Tomer, Light sheet theta microscopy for high-resolution quantitative imaging of large biological systems (2017). bioRxiv 119289

    Google Scholar 

  78. A. Milgroom, E. Ralston, Clearing skeletal muscle with CLARITY for light microscopy imaging. Cell Biol. Int. 40, 478–483 (2016)

    Article  Google Scholar 

  79. J.R. Moffitt, J. Hao, D. Bambah-Mukku, T. Lu, C. Dulac, X. Zhuang, High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. 113, 14456–14461 (2016)

    Article  Google Scholar 

  80. Y.E. Murgha, J.-M. Rouillard, E. Gulari, Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries. PLoS ONE 9, e94752 (2014)

    Article  Google Scholar 

  81. E. Murray, J.H. Cho, D. Goodwin, T. Ku, J. Swaney, S.-Y. Kim, H. Choi, Y.-G. Park, J.-Y. Park, A. Hubbert et al., Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015)

    Article  Google Scholar 

  82. I. Nehrhoff, D. Bocancea, J. Vaquero, J.J. Vaquero, J. Ripoll, M. Desco, M.V. Gómez-Gaviro, 3D imaging in CUBIC-cleared mouse heart tissue: going deeper. Biomed. Opt. Express 7, 3716–3720 (2016)

    Article  Google Scholar 

  83. W.M. Palmer, A.P. Martin, J.R. Flynn, S.L. Reed, R.G. White, R.T. Furbank, C.P.L. Grof, PEA-CLARITY: 3D molecular imaging of whole plant organs. Sci. Rep. 5, 13492 (2015)

    Article  Google Scholar 

  84. C. Pan, R. Cai, F.P. Quacquarelli, A. Ghasemigharagoz, A. Lourbopoulos, P. Matryba, N. Plesnila, M. Dichgans, F. Hellal, A. Ertürk, Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016)

    Article  Google Scholar 

  85. H. Peng, Z. Zhou, E. Meijering, T. Zhao, G.A. Ascoli, M. Hawrylycz, Automatic tracing of ultra-volumes of neuronal images. Nat. Methods 14, 332–333 (2017)

    Article  Google Scholar 

  86. A. Raj, P. van den Bogaard, S.A. Rifkin, A. van Oudenaarden, S. Tyagi, Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008)

    Article  Google Scholar 

  87. A. Regev, S. Teichmann, E.S. Lander, I. Amit, C. Benoist, E. Birney, B. Bodenmiller, P. Campbell, P. Carninci, M. Clatworthy et al., The human cell atlas (2017). bioRxiv 121202

    Google Scholar 

  88. N. Renier, Z. Wu, D.J. Simon, J. Yang, P. Ariel, M. Tessier-Lavigne, iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014)

    Article  Google Scholar 

  89. N. Renier, E.L. Adams, C. Kirst, Z. Wu, R. Azevedo, J. Kohl, A.E. Autry, L. Kadiri, K. Umadevi Venkataraju, Y. Zhou et al., Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016)

    Article  Google Scholar 

  90. M. Renner, M.A. Lancaster, S. Bian, H. Choi, T. Ku, A. Peer, K. Chung, J.A. Knoblich, Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017)

    Article  Google Scholar 

  91. D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162, 246–257 (2015)

    Article  Google Scholar 

  92. J.L. Ross, The dark matter of biology. Biophys. J. 111, 909–916 (2016)

    Article  Google Scholar 

  93. L.A. Royer, W.C. Lemon, R.K. Chhetri, Y. Wan, M. Coleman, E.W. Myers, P.J. Keller, Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34, 1267–1278 (2016)

    Article  Google Scholar 

  94. T.L. Schmidt, B.J. Beliveau, Y.O. Uca, M. Theilmann, F. Da Cruz, C.-T. Wu, W.M. Shih, Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015)

    Article  Google Scholar 

  95. M.K. Schwarz, A. Scherbarth, R. Sprengel, J. Engelhardt, P. Theer, G. Giese, Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains. PLoS ONE 10, e0124650 (2015)

    Article  Google Scholar 

  96. J. Seo, M. Choe, S.-Y. Kim, Clearing and labeling techniques for large-scale biological tissues. Mol. Cells 39, 439–446 (2016)

    Article  Google Scholar 

  97. S. Shah, E. Lubeck, M. Schwarzkopf, T.-F. He, A. Greenbaum, C.H. Sohn, A. Lignell, H.M.T. Choi, V. Gradinaru, N.A. Pierce et al., Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143, 2862–2867 (2016)

    Article  Google Scholar 

  98. S. Shah, E. Lubeck, W. Zhou, L. Cai, In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016)

    Article  Google Scholar 

  99. S. Shah, E. Lubeck, W. Zhou, L. Cai, seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron 94(752–758), e1 (2017)

    Article  Google Scholar 

  100. M. Shibayama, T. Tanaka, Volume phase transition and related phenomena of polymer gels, in Responsive Gels: Volume Transitions I, ed. by P.K. Dušek (Springer, Berlin, 1993), pp. 1–62

    Google Scholar 

  101. S. Sindhwani, A.M. Syed, S. Wilhelm, D.R. Glancy, Y.Y. Chen, M. Dobosz, W.C.W. Chan, Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano 10, 5468–5478 (2016)

    Article  Google Scholar 

  102. S. Sindhwani, A.M. Syed, S. Wilhelm, W.C.W. Chan, Exploring passive clearing for 3D optical imaging of nanoparticles in intact tissues. Bioconjug. Chem. 28, 253–259 (2017)

    Article  Google Scholar 

  103. W. Spalteholz, Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirzel, Leipzig, 1914)

    Google Scholar 

  104. J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    Article  Google Scholar 

  105. E.A. Susaki, H.R. Ueda, Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem. Biol. 23, 137–157 (2016)

    Article  Google Scholar 

  106. E.A. Susaki, K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T.M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi et al., Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014)

    Article  Google Scholar 

  107. E.A. Susaki, K. Tainaka, D. Perrin, H. Yukinaga, A. Kuno, H.R. Ueda, Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10, 1709–1727 (2015)

    Article  Google Scholar 

  108. A.M. Syed, S. Sindhwani, S. Wilhelm, B.R. Kingston, D.S.W. Lee, J.L. Gommerman, W.C.W. Chan, Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J. Am. Chem. Soc. 139, 9961–9971 (2017)

    Google Scholar 

  109. E.L. Sylwestrak, P. Rajasethupathy, M.A. Wright, A. Jaffe, K. Deisseroth, Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164, 792–804 (2016)

    Article  Google Scholar 

  110. K. Tainaka, S.I. Kubota, T.Q. Suyama, E.A. Susaki, D. Perrin, M. Ukai-Tadenuma, H. Ukai, H.R. Ueda, Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159, 911–924 (2014)

    Article  Google Scholar 

  111. K. Tainaka, A. Kuno, S.I. Kubota, T. Murakami, H.R. Ueda, Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016)

    Article  Google Scholar 

  112. Y. Tang, X.-L. Zhang, L.-J. Tang, R.-Q. Yu, J.-H. Jiang, In situ imaging of individual mRNA mutation in single cells using ligation-mediated branched hybridization chain reaction (ligation-bHCR). Anal. Chem. 89, 3445–3451 (2017)

    Article  Google Scholar 

  113. M.W. Tibbitt, J.E. Dahlman, R. Langer, Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016)

    Article  Google Scholar 

  114. P.W. Tillberg, F. Chen, K.D. Piatkevich, Y. Zhao, C.-C. (Jay) Yu, B.P. English, L. Gao, A. Martorell, H.-J. Suk, F. Yoshida et al., Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016)

    Google Scholar 

  115. R. Tomer, L. Ye, B. Hsueh, K. Deisseroth, Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014)

    Article  Google Scholar 

  116. R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V.M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, K. Deisseroth, SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796–1806 (2015)

    Article  Google Scholar 

  117. J.B. Treweek, V. Gradinaru, Extracting structural and functional features of widely distributed biological circuits with single cell resolution via tissue clearing and delivery vectors. Curr. Opin. Biotechnol. 40, 193–207 (2016)

    Article  Google Scholar 

  118. J.B. Treweek, K.Y. Chan, N.C. Flytzanis, B. Yang, B.E. Deverman, A. Greenbaum, A. Lignell, C. Xiao, L. Cai, M.S. Ladinsky et al., Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015)

    Article  Google Scholar 

  119. V.V. Tuchin, Tissue optics and photonics: light-tissue interaction. J. Biomed. Photonics Eng. 1, 98–134 (2015)

    Article  Google Scholar 

  120. V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.H. Mavlyutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2, 401–417 (1997)

    Article  Google Scholar 

  121. R. Usha, T. Ramasami, Effect of hydrogen-bond-breaking reagent (urea) on the dimensional stability of rat tail tendon (RTT) collagen fiber. J. Appl. Polym. Sci. 84, 975–982 (2002)

    Article  Google Scholar 

  122. Y. Wang, J.B. Woehrstein, N. Donoghue, M. Dai, M.S. Avendano, R.C.J. Schackmann, S.S. Wang, P.W. Tillberg, D. Park, S.W. Lapan et al., Rapid sequential in situ multiplexing with DNA-exchange-imaging Nano Lett. 17, 6131–6139 (2017)

    Google Scholar 

  123. C.A. Warner, M.L. Biedrzycki, S.S. Jacobs, R.J. Wisser, J.L. Caplan, D.J. Sherrier, An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiol. 166, 1684–1687 (2014)

    Article  Google Scholar 

  124. R. Weissleder, A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001)

    Article  Google Scholar 

  125. D.J. Williams, The history of Werner Spalteholz’s Handatlas der Anatomie des Menschen. J. Audiov. Media Med. 22, 164–170 (1999)

    Article  Google Scholar 

  126. E. Williams, J. Moore, S.W. Li, G. Rustici, A. Tarkowska, A. Chessel, S. Leo, B. Antal, R.K. Ferguson, U. Sarkans et al., Image data resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017)

    Google Scholar 

  127. H. Xiong, Z. Zhou, M. Zhu, X. Lv, A. Li, S. Li, L. Li, T. Yang, S. Wang, Z. Yang et al., Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Commun. 5, 3992 (2014)

    Article  Google Scholar 

  128. F. Xuan, I.-M. Hsing, Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J. Am. Chem. Soc. 136, 9810–9813 (2014)

    Article  Google Scholar 

  129. B. Yang, J.B. Treweek, R.P. Kulkarni, B.E. Deverman, C.-K. Chen, E. Lubeck, S. Shah, L. Cai, V. Gradinaru, Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014)

    Article  Google Scholar 

  130. L. Ye, W.E. Allen, K.R. Thompson, Q. Tian, B. Hsueh, C. Ramakrishnan, A.-C. Wang, J.H. Jennings, A. Adhikari, C.H. Halpern et al., Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016)

    Article  Google Scholar 

  131. D.Y. Zhang, G. Seelig, Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011)

    Article  Google Scholar 

  132. Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, eaaf3627 (2017)

    Article  Google Scholar 

  133. Y. Zhao, O. Bucur, H. Irshad, F. Chen, A. Weins, A.L. Stancu, E.-Y. Oh, M. DiStasio, V. Torous, B. Glass et al., Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017)

    Google Scholar 

  134. S.B. Zimmerman, A.P. Minton, Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27–65 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yon Kim .

Editor information

Editors and Affiliations

Glossary of Acronyms Used in Clearing and Labeling Techniques for Large Brain Tissues

Glossary of Acronyms Used in Clearing and Labeling Techniques for Large Brain Tissues

3DISCO, 3D Imaging of Solvent-Cleared Organs; AAV, Adeno-Associated Virus; Ab, Antibody; ACT-PRESTO, Active Clarity Technique–Pressure Related Efficient and Stable Transfer of macromolecules into Organs; AcX, Acryloyl-X; A4P0, 4% Acrylamide; A4P4B0.05, 4% Acrylamide-4% PFA-0.05%; APS, Ammonium persulfate; BABB, Benzyl Alcohol–Benzyl Benzoate; BABB-D, mixture of DPE and BABB; Bisacrylamide; BIS, N,N′-methylenebis(acrylamide); CLARITY, Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue-hYdrogel; COLM, Clarity Optimized Light-sheet Microscopy; CUBIC, Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis; DBE, dibenzyl ether; DCM, dichloromethane; DHEBA, N,N’-(1,2-dihydroxyethylene)bisacrylamide; DIG, digoxigenin; DPE, diphenyl ether; DMSO, dimethyl sulfoxide; EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; ePACT, expansion-PACT; ExM, Expansion Microscopy; ExFISH, Expansion Fluorescent In Situ Hybridization; FP, Fluorescent Protein; GA, Glutaraldehyde; G1P4, 1% Glutaraldehyde-4% PFA; HCR, Hybridization Chain Reaction; hp-iExM, High pH iExM; iDISCO, Immunolabeling-enabled 3D Imaging of Solvent-Cleared Organs; iExM, Iterative Expansion Microscopy; IF staining, Immunofluorescence staining; ISH, In Situ Hybridization; IHC, Immunohistochemistry; LNA, Locked Nucleic Acid; LSFM, Light Sheet Fluorescence Microscopy; LSTM, Light Sheet Theta Microscopy; MAP, Magnified Analysis of the Proteome; MA-NHS, methacrylic acid-N-hydroxysuccinimide ester; MBAA, N,N′-methylenebisacrylamide; MERFISH, Multiplexed error-robust FISH; PACT, Passive CLARITY Technique; PAINT, Point Accumulation for Imaging in Nanoscale Topography; PARS, Perfusion-assisted Agent Release in Situ; PEG, Polyethylene Glycol; PFA, Paraformaldehyde; poly-dT, a short sequence of deoxy-thymidine nucleotides; proExM, Protein retention ExM; Pro-K, Proteinase K; PRISM, Probe-based Imaging for Sequential Multiplexing; RI, Refractive Index; RIMS, Refractive Index Matching Solution; RT, room temperature; SDS, Sodium Dodecyl Sulfate; SE-CLARITY, Stochastic Electrotransport-CLARITY; SeeDB, See Deep Brain; SeeDB2G, G for glycerol-immersion lens; SeeDB2S, S for super-resolution; SeqFISH, sequential FISH; smFISH, Single-Molecule Fluorescent In Situ Hybridization; SPED, SPherical aberration assisted Extended depth-of-field; SWITCH, System-Wide control of Interaction Time and kinetics of CHemicals; TDE, 2,2′-thiodiethanol; TEMED, tetramethylethylenediamine; THF, Tetrahydrofuran; Triethanolamine, TEA; TX-100, Triton X-100; uDISCO, Ultimate DISCO

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, J., Koo, DJ., Kim, SY. (2019). Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging. In: Kao, FJ., Keiser, G., Gogoi, A. (eds) Advanced Optical Methods for Brain Imaging. Progress in Optical Science and Photonics, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-9020-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-9020-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-9019-6

  • Online ISBN: 978-981-10-9020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics