Skip to main content

Applications of Fungal Nanobiotechnology in Drug Development

  • Chapter
  • First Online:
Fungal Nanobionics: Principles and Applications

Abstract

Nanotechnology is gradually being incorporated into drug industry sector. This technology is used to overcome the problem of drug delivery through existing approaches; however the cost factors and implementation issues have restricted this field and increased the need for basic as well technological innovations. There is an increasing interest in the use of fungi in these processes since they have potential to generate eco-friendly and relatively rapid and clean metallic nanoparticles. Fungal nanobiotechnology (FNBT) has resulted in development of nanodrugs and novel diagnostic/analytical tools for therapy and prevention of many chronic diseases such as cancer, HIV infections, and kidney diseases. In present chapter applications of FNBT in targeted drug delivery, bio-sensing, and development of drugs with enhanced efficiency and efficacy having lesser side effects have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliosmanoglu A, Basaran I (2012) Nanotechnology in cancer treatment. J Nanomed Biotherapeut Discov 2:107. https://doi.org/10.4172/2155-983X.1000107

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R (2014) Green synthesis of silver nanoparticles using Achillea biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules 19:4624–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao H, Hao N, Yang Y, Zhao D (2010a) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481–489

    Article  CAS  Google Scholar 

  • Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010b) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541

    Article  CAS  PubMed  Google Scholar 

  • Bhat R, Deshpande R, Sharanabasava VG, Do SH, Venkataraman A (2011) Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorg Chem Appl 7:650979

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Boroumand Moghaddam A, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, Cde H et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chuhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC et al (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2519

    Google Scholar 

  • Dar J, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agr Technol 10:823–831

    Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces 79:5–18

    Article  CAS  PubMed  Google Scholar 

  • De Rosa G, Caraglia M (2013) New therapeutic opportunities from old drugs: the role of nanotechnology. J Bioequiv Availab 5:e30

    Google Scholar 

  • Duran N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Article  Google Scholar 

  • Durán N, Marcato PD, de Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Eleftheriadou M, Pyrgiotakis G, Demokritou P (2016) Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr Opin Biotechnol 44:87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneide GE (2006) Nano neuro knitting: peptide nanofibers scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Newehy MH, Al-Deyab SS, Kenawy E, Abdel-Megeed A (2012) Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fiber Polym 13:709–717

    Article  CAS  Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374

    Article  CAS  PubMed  Google Scholar 

  • Faraza M, Abbasia A, Naqvia FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors & Actuators: B 269:195–202

    Article  CAS  Google Scholar 

  • Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T (2009) Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surf B 74:304–308

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Formoso P, Muzzalupo R, Tavano L, De Filpo G, Nicoletta FP (2016) Nanotechnology for the environment and medicine. Mini-Rev Med Chem 16:668–675

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  • Gou M (2013) Promising application of nanotechnology in anticancer drug delivery. Drug Des 2:e117

    Article  CAS  Google Scholar 

  • Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and application of nanoparticles in biology. Recent Res Sci Technol 4:36–38

    CAS  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranb abu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 8:4399–4413

    PubMed  PubMed Central  Google Scholar 

  • Gurunathan S, Han J, Park JH, Kim YK (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9:1–11

    Article  CAS  Google Scholar 

  • Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–1428

    Article  CAS  PubMed  Google Scholar 

  • Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  PubMed  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Iskandar F (2009) Nanoparticle processing for optical applications–a review. Adv Powder Technol 20:283–292

    Article  CAS  Google Scholar 

  • Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R et al (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B: Biointerfaces 106:86–92

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Bonde S, Gaikwad S, Gade A, Abd-Elsalam KA, Rai M (2013) Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J Bionanosci 7:1–5

    Article  CAS  Google Scholar 

  • Khosravi A, Shojaosadati SA (2009) Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol 6:973–983

    Article  CAS  Google Scholar 

  • Kumar R, Liu D, Zhang L (2008a) Advances in proteinous biomaterials. J Biobaased Mater Bioenergy 2:1–24

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadeau JL (2008b) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  CAS  PubMed  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nano- particles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Maite L, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  Google Scholar 

  • Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirunalini S, Arulmozhi V, Deeppalakshmi K, Krishnaveni M (2012) Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Notulae Scientia Biologicae 4:55–61

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy S, Wahab R, Jeong SH, Hwang I, Yang YB et al (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl Microbiol Biotechnol 92:617–630

    Article  CAS  PubMed  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2010) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanopart Res 13:3129–3137

    Article  CAS  Google Scholar 

  • Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Nithya R, Ragunathan R (2014) In vitro synthesis, characterization and medical application of silver nanoparticle by using a lower fungi. Middle-East J Sci Res 21:922–928

    Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and AgSiO2 nanoparticles by y-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar typhimurium and Botrytis cinerea. Colloids Surf A 275:228–233

    Article  CAS  Google Scholar 

  • Owaid MN, Raman J, Lakshmanan H, Al-Saeedi SS, Sabaratnam V, Abed IA (2015) Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater Lett 153:186–190

    Article  CAS  Google Scholar 

  • Panchangam RBS, Dutta T (2015) Engineered nanoparticles for the delivery of anticancer therapeutics. J Pharm Drug Deliv Res 4:1

    Article  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:1–10

    Article  CAS  Google Scholar 

  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  CAS  PubMed  Google Scholar 

  • Podgaetsky VM, Tereshchenko SA, Reznichenko AV, Selishchev SV (2004) Laser-limiting materials for medical use. In: Optical technologies for industrial, environmental, and biological sensing; International Society for Optics and Photonics, Bellingham, pp 183–189

    Google Scholar 

  • Poulose S, Panda T, Nair PP, Theodore T (2014) Biosynthesis of silver nanoparticles. J Nanosci Nanotechnol 14:2038–2049

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. isbn:978-3-319-42989-2

    Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajakumar G, Rahuman A, Roopan SM, Khanna VG, Elango G, Kamaraj C et al (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29

    Article  CAS  PubMed  Google Scholar 

  • Raman JG, Reddy R, Lakshmanan H, Selvaraj H, Gajendran B, Nanjian R, Chinnasamy A, Sabaratnam V (2015) Mycosynthesis and characterization of silver nanoparticles from Pleurotus djamor var. roseus and their in vitro cytotoxicity effect on PC3 cells. Process Biochem 50:140–147

    Article  CAS  Google Scholar 

  • Riechelmann R, Grothey A (2017) Antiangiogenic therapy for refractory colorectal cancer: current options and future strategies. Ther Adv Med Oncol 9:106–126

    Article  CAS  PubMed  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    Article  CAS  PubMed Central  Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process 100:829–834

    Article  CAS  Google Scholar 

  • Saglam N, Yesilada O, Cabuk A, Sam M, Saglam S, Ilk S, Emul E, Celik PA, Gurel E (2016) Innovation of strategies and challenges for fungal nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 25–46

    Chapter  Google Scholar 

  • Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24

    Article  CAS  PubMed  Google Scholar 

  • Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomater Biostruct 5:491–496

    Google Scholar 

  • Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Scheinberg DA, Grimm J, Heller DA, Stater EP, Bradbury M, McDevitt MR (2017) Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 46:66–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahi SK, Patra M (2003) Biotechnological aspect for the synthesis of bioactive nanoparticle and their formulation active against human pathogenic fungi. Rev Adv Mat Sc 5:501–509

    Google Scholar 

  • Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGF-and IL-1-beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnol 7:8

    Article  CAS  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E.coli and S. aureus. Bioinorg Chem Appl 408021(2014):1–8

    Google Scholar 

  • Smith RR, Lodder RA (2013) When does a nanotechnology device become a drug? Size versus smarts. J Dev Drugs 2:e121

    Article  Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on production engineering Tokyo, Japan Soc Precision Engineering. Part II: 18–23

    Google Scholar 

  • Tiwari M (2012) Nano cancer therapy strategies. J Cancer Res Ther 8:19–22

    Article  CAS  PubMed  Google Scholar 

  • Toffoli G, Rizzolio F (2013) Role of nanotechnology in cancer diagnostics. J Carcinogene Mutagene 4:e135

    Article  CAS  Google Scholar 

  • Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR (2008) Induction of cell death by TiO2 nanoparticles: studies on a human monoblastoid cell line. Toxicol in Vitro 22:1689–1696

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  PubMed  Google Scholar 

  • Will SEA, Favaron PO, Pavez MA, Florentino LC, Soares D, Oliveira FC, Rici REG, Miglino MA, Alcantara D, Mamizuka EM (2011) Bactericidal silver nanoparticles present an antiangiogenic effect in the chorioallantoic membrane model (CAM). Sci Against Microb Pathog Commun Curr Res Technol Adv 1:219–227

    Google Scholar 

  • Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30:2797–2803

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M (2009) Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Heal A 72:1141–1149

    Article  CAS  Google Scholar 

  • Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC, Choi MMF (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82:177–183

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Cloutier SG, Ivanov I, Knappenberger KL, Robel I, Zhang F (2012) Nanocrystals for electronic and optoelectronic applications. J Nanomater 2012:1–2. https://doi.org/10.1155/2012/392742

    Google Scholar 

Download references

Acknowledgment

KPB gratefully acknowledges the director of CSIR-CSMCRI, Bhavnagar, for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, K.B., Tiwari, B.K. (2018). Applications of Fungal Nanobiotechnology in Drug Development. In: Prasad, R., Kumar, V., Kumar, M., Wang, S. (eds) Fungal Nanobionics: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-8666-3_11

Download citation

Publish with us

Policies and ethics