Skip to main content

A Computational Approach for Designing Tiger Corridors in India

  • Conference paper
  • First Online:
Smart and Innovative Trends in Next Generation Computing Technologies (NGCT 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 827))

Included in the following conference series:

  • 1362 Accesses

Abstract

Wildlife corridors are components of landscapes, which facilitate the movement of organisms and processes between intact habitat areas, and thus provide connectivity between the habitats within the landscapes. Corridors are thus regions within a given landscape that connect fragmented habitat patches within the landscape. The major concern of designing corridors as a conservation strategy is primarily to counter, and to the extent possible, mitigate the effects of habitat fragmentation and loss on the biodiversity of the landscape, as well as support continuance of land use for essential local and global economic activities in the region of reference.

In this paper, we use game theory, graph theory, membership functions and chain code algorithm to model and design a set of wildlife corridors with tiger (Panthera tigris tigris) as the focal species. We identify the parameters which would affect the tiger population in a landscape complex and using the presence of these identified parameters construct a graph using the habitat patches supporting tiger presence in the landscape complex as vertices and the possible paths between them as edges. The passage of tigers through the possible paths has been designed using an Assurance game, with tigers as an individual player. The game is recursively played as the tiger passes through each grid considered for the model. The iteration causes the tiger to choose the most suitable path signifying the emergence of adaptability.

As a nominal explanation of the game, we design this model through the interaction of tiger with the parameters as deterministic finite automata, for which the transition function is obtained by the game payoff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  MathSciNet  Google Scholar 

  2. Axelrod, R.: The Evolution of Cooperation. Basic Books Inc., New York (1984)

    MATH  Google Scholar 

  3. Baum, K.A., Haynes, K.J., Dillemuth, F.P., Cronin, J.T.: The matrix enhances the effectiveness of corridors and stepping stones. Ecology 85(10), 2671–2676 (2004)

    Article  Google Scholar 

  4. Baland, J.M., Platteau, J.P.: Halting Degradation of Natural Resources. Oxford University Press, Oxford (1996)

    Google Scholar 

  5. Beier, P., Loe, S.: A checklist for evaluating impacts to wildlife movement corridors. Wildl. Soc. Bull. 20, 434–440 (1992)

    Google Scholar 

  6. Beier, P., Noss, R.F.: Do habitat corridors provide connectivity? Conserv. Biol. 12(6), 1241–1252 (1998)

    Article  Google Scholar 

  7. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  8. Bondy, J., Murty, U.S.R.: Graph Theory. Springer, New Delhi (2008)

    Book  Google Scholar 

  9. Bunn, A.G., Urban, D.L., Keitt, T.H.: Landscape connectivity: a conservation application of graph theory. J. Environ. Manag. 59, 265–278 (2000)

    Article  Google Scholar 

  10. Cantwell, M.D., Forman, R.T.T.: Landscape graphs; ecological modelling with graph-theory to detect configurations common to diverse landscapes. Landsc. Ecol. 8, 239–255 (1993)

    Article  Google Scholar 

  11. Chetkiewicz, B.C.-L., St. Clair, C.C., Boyce, M.S.: Corridors for conservation: integrating pattern and process. Annu. Rev. Ecol. Evol. Syst. 37, 317–342 (2006)

    Google Scholar 

  12. Dunne, J.A., Williams, R.J., Martinez, N.D.: Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002)

    Article  Google Scholar 

  13. Dutta, T., Sharma, S., Maldonado, J.E., Wood, T.C., Panwar, H.S., Seidensticker, J.: Gene flow and evolutionary history of leopards (panthera pardus) in central Indian highlands. Evol. Appl. (2013). https://doi.org/10.1111/eva12078

  14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Publications, London (2012)

    Google Scholar 

  15. Fall, A., Fortin, M.-J., Manseau, M., O’Brien, D.: Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10, 448–461 (2007)

    Article  Google Scholar 

  16. Gopal, R., Qureshi, Q., Bhardwaj, M., Singh, R.K.J., Jhala, Y.V.: Evaluating the status of the endangered tiger Panthera tigris and its prey in Panna Tiger Reserve, Madhya Pradesh, India. Oryx 44, 383–398 (2010)

    Article  Google Scholar 

  17. Hanski, I.: Metapopulation dynamics. Nature 396, 41–49 (1998)

    Article  Google Scholar 

  18. Hanski, I., Gilpin, M.: Metapopulation dynamics – brief-history and conceptual domain. Biol. J. Linn. Soc. 42, 3–16 (1991)

    Article  Google Scholar 

  19. Hanski, I., Ovaskainen, O.: The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000)

    Article  Google Scholar 

  20. Harris, L.D., Gallagher, P.B.: New initiatives for wildlife conservation: the need for movement corridors. In: Mackintosh, G. (ed.) Preserving Communities and Corridors, p. 96. Defenders of Wildlife, Washington, D.C. (1989)

    Google Scholar 

  21. Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Penguin, London (2000)

    MATH  Google Scholar 

  22. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison Wesley, Boston (2006)

    MATH  Google Scholar 

  23. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  24. Jhala, Y.V., Gopal, R., Qureshi, Q. (eds.): Status of Tigers, Co-predators and Prey in India, p. 151. National Tiger Conservation Authority, Govt. of India, New Delhi, and Wildlife Institute of India, Dehradun. TR08/001 (2008)

    Google Scholar 

  25. Jhala, Y.V., Qureshi, Q., Gopal, R., Sinha, P.R. (eds.): Status of Tigers, Co-predators and Prey in India, 2010, p. 302. National Tiger Conservation Authority, Govt. of India, New Delhi, and Wildlife Institute of India, Dehradun. TR2011/003 (2011)

    Google Scholar 

  26. Levett, W.J.M.: An Introduction to the Theory of Formal Languages and Automata. John Benjamins, Amsterdam (2008)

    Google Scholar 

  27. Jordan, F., Liu, W.C., Davis, A.J.: Topological keystone species: measures of positional importance in food webs. Oikos 112, 535–546 (2006)

    Article  Google Scholar 

  28. Keitt, T.H.: Network theory: an evolving approach to landscape conservation. In: Dale, V.H. (ed.) Ecological Modelling for Resource Management. Springer, New York (2003). https://doi.org/10.1007/0-387-21563-8_7

    Chapter  Google Scholar 

  29. Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  Google Scholar 

  30. Nowak, M.A., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 56–58 (1993)

    Article  Google Scholar 

  31. Nowak, M.A., Sigmund, K.: Chaos and the evolution of cooperation. Proc. Natl. Acad. Sci. USA 90, 5091–5094 (1993)

    Article  Google Scholar 

  32. Nowak, M.A., Bonhoeffer, S., May, R.M.: Spatial games and maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91, 4877–4881 (1994)

    Article  Google Scholar 

  33. Minor, E.S., Urban, D.L.: A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22(2), 297–307 (2008)

    Article  Google Scholar 

  34. Opdam, P., Verboom, J., Powels, R.: Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. Landsc. Ecol. 18, 113–126 (2003)

    Article  Google Scholar 

  35. Opdam, P., Steingrover, E., van Rooij, S.: Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plann. 75, 322–332 (2006)

    Article  Google Scholar 

  36. Ozgur, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13), i277–i285 (2008)

    Article  Google Scholar 

  37. Santos, M., Szathmary, E.: The evolution of cooperation. Treballs de la SCB 60, 213–229 (2009). https://doi.org/10.2436/20.1501.02.87

    Article  Google Scholar 

  38. Pulliam, H.R.: Sources, sinks and population regulation. Am. Nat. 132, 652–661 (1988)

    Article  Google Scholar 

  39. Rayfield, B., Fortin, M.-J., Fall, A.: Connectivity for conservation: a framework to classify network measures. Ecology 92(4), 847–858 (2011)

    Article  Google Scholar 

  40. Taylor, P.D., Fahrig, L., Henein, K., Merriam, G.: Connectivity is a vital element of landscape structure. Oikos 68, 571–573 (1993)

    Article  Google Scholar 

  41. Taylor, P.D., Fahrig, L., With, K.A.: Landscape connectivity: a return to the basics. In: Crooks, K.R., Sanjayan, M. (eds.) Connectivity Conservation, pp. 29–43. Cambridge University Press, Cambridge (2006)

    Chapter  Google Scholar 

  42. Urban, D.L., Keitt, T.H.: Landscape connectivity: a graph-theoretic perspective. Ecology 82, 1205–1218 (2001)

    Article  Google Scholar 

  43. Urban, D.L., Minor, E.S., Treml, E.A., Schick, R.S.: Graph models of habitat mosaics. Ecol. Lett. 12, 260–273 (2009)

    Article  Google Scholar 

  44. Webb, J.N.: Game Theory: Decisions, Interactions and Evolution. Springer, New Delhi (2007). https://doi.org/10.1007/978-1-84628-636-0

    Book  MATH  Google Scholar 

  45. Wikramanayake, E.D., Dinerstein, E., Robinson, J.G., Karanth, U., Rabinowitz, A., Olson, D., Mathew, T., Hedao, P., Conner, M., Hemley, G., Bolze, D.: An ecology based method for defining priorities for large mammal conservation: the tiger as case study. Conserv. Biol. 12(4), 865–878 (1998)

    Article  Google Scholar 

  46. Wikramanayake, E., McKnight, M., Dinerstein, E., Joshi, A., Gurung, B., Smith, D.: Designing a conservation landscape for tiger in human-dominated environments. Conserv. Biol. 18(3), 839–844 (2004)

    Article  Google Scholar 

  47. Yumnam, B., Jhala, Y.D., Qureshi, Q., Maldonado, J.E., Gopal, R., Saini, S., Srinivas, Y., Fleischer, R.C.: Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11), e111207 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Shanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shanu, S., Bhattacharya, S. (2018). A Computational Approach for Designing Tiger Corridors in India. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 827. Springer, Singapore. https://doi.org/10.1007/978-981-10-8657-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8657-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8656-4

  • Online ISBN: 978-981-10-8657-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics