Skip to main content

Converting an Armington Model into a Melitz Model: Giving Melitz Sectors to GTAP

  • Chapter
  • First Online:
Trade Theory in Computable General Equilibrium Models

Abstract

This chapter describes how to convert an existing Armington CGE model into a Melitz CGE model with minimal changes to the original Armington model. The main task is to add equations to the bottom of the Armington model to form what we call an Armington-to-Melitz or A2M system. With an A2M system, industries can be switched between Armington and Melitz treatments by closure swaps. We use BasicArmington (a simple Armington model) to explain how to create an A2M system. Then we apply the method to a 10-region, 57-commodity version of the frequently applied policy-oriented GTAP model to create a GTAP-A2M system. Using this system, we compare the effects under Armington and Melitz assumptions of a tariff imposed by North America on imports of wearing apparel (Wap). To facilitate the comparison, we decompose the welfare effects for each region into parts attributable to changes in employment, terms of trade and scale-related efficiency. This helps us to understand how each of these factors operates under Armington and Melitz, but it does not give us an intuitive explanation of their net outcome. To explain net outcomes for welfare effects by region we set out an intuitive overarching theory. We check its validity by back-of-the-envelope (BOTE) calculations using GTAP data items and selected simulation results. BOTE calculations enable us to cut through the maze of complications in CGE models to locate, for any specific result, the essential underlying ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The GTAP website is at https://www.gtap.agecon.purdue.edu/.

  2. 2.

    We include the dot subscript on factory, market, fob, cif, and purchasers prices. The dot signifies the typical firm. All firms are “typical” in Armington. Consequently for Armington the dots are not required. However, their inclusion does no harm and is convenient for linking Armington to Melitz where the dots do have a role.

  3. 3.

    In Chap. 6 we treated the MU’s as variables. This was necessary for illustrating how the BR algorithm works.

  4. 4.

    δsd,c is treated as a parameter throughout this chapter.

  5. 5.

    In deriving (7.13) from the Melitz version of (T2.2) it is useful to note that \( {{{\text{SHA}}({\text{s}},{\text{d}},{\text{c}}) = {\text{N}}_{{{\text{sd}},{\text{c}}}}\updelta_{{{\text{sd}},{\text{c}}}}^{\upsigma} {\text{P}}_{{ \bullet {\text{sd}},{\text{c}}}}^{{1 -\upsigma}} } \mathord{\left/ {\vphantom {{{\text{SHA}}({\text{s}},{\text{d}},{\text{c}}) = {\text{N}}_{{{\text{sd}},{\text{c}}}}\updelta_{{{\text{sd}},{\text{c}}}}^{\upsigma} {\text{P}}_{{ \bullet {\text{sd}},{\text{c}}}}^{{1 -\upsigma}} } {\sum\limits_{\text{v}} {{\text{N}}_{{{\text{vd}},{\text{c}}}}\updelta_{{{\text{vd}},{\text{c}}}}^{\upsigma} {\text{P}}_{{ \bullet {\text{vd}},{\text{c}}}}^{{ 1-\upsigma}} } }}} \right. \kern-0pt} {\sum\limits_{\text{v}} {{\text{N}}_{{{\text{vd}},{\text{c}}}}\updelta_{{{\text{vd}},{\text{c}}}}^{\upsigma} {\text{P}}_{{ \bullet {\text{vd}},{\text{c}}}}^{{ 1-\upsigma}} } }} \), see (4.66).

  6. 6.

    In using Appendix 4.3 to follow the derivation of (T7.20), it is helpful to note that in the Appendix: the c subscript is dropped; Tsd represents the power of a tariff, now denoted by TMsd,c; and V(s,d)/Tsd is now denoted by MARKETV(s,d,c). Also recall from (2.27) that \( \upbeta^{{\upsigma - 1}} =\upalpha/(\upalpha - (\upsigma - 1)) \).

  7. 7.

    The only exceptions are the Armington simulations in Table 6.5 with σ not equal to 3.8.

  8. 8.

    As mentioned earlier we assume that there are no real-world destination-specific taxes.

  9. 9.

    This is all the variables for Armington and the welfare variables for Melitz, but not the decomposition variables for Melitz. Melitz welfare is decomposed in a different way in the two tables.

  10. 10.

    This can be seen in the first panel of Table 6.4: country 1’s exports fall by 20.648% whereas country 2’s exports fall by 25.046%.

  11. 11.

    The standard version of GTAP includes all-input-saving technical change variables ao(i,r) determined by several shift variables. Our aoMel(i,r) appears as an additional shifter in the determination of ao(i,r).

  12. 12.

    This is trivial in BasicArmington-A2M: there is only one input, labor.

  13. 13.

    Direct tax-carrying flow in Tables 7.5 and 7.6 corresponds to Genuine tax-carrying flows (tariffs) in Table 7.4. Traditional terms of trade and Extra Melitz terms of trade in Tables 7.5 and 7.6 correspond to the two terms-of-trade effects in Table 7.4. Extra Melitz efficiency in Tables 7.5 and 7.6 corresponds to Efficiency in producing effective units in Table 7.4. We omit the “employment factor” from Table 7.5 and 7.6: it would simply be a column of zeros because we hold all primary factor inputs (labor, capital, land and natural resources) constant in each country.

  14. 14.

    In Table 7.4, the additional Melitz terms-of-trade effect for the tariff-imposing country (country 2) is positive whereas in Table 7.5 it is negative. In Table 7.5, NAmerica’s tariffs inflate the fob cost of its imports by reducing the efficiency in exporting of its foreign suppliers of Wap. There is no compensating increase in the fob prices of NAmerica’s exports. In Table 7.4, country 2’s tariffs inflate the costs of both its exports and imports.

  15. 15.

    By real we mean the price increase relative to the general price level in SEAsia measured by movements in the price index for factors (labor, capital, land and natural resources).

  16. 16.

    This is simply 100 times the ratio of domestically produced Wap used is SEAsia to aggregate consumption. It doesn’t mean that Wap is necessarily used by households.

  17. 17.

    Readers can check these results and others mentioned in this and following paragraphs by rerunning our simulations using the downloadable code mentioned at the start of Sect. 7.5.

  18. 18.

    With fds.c equal to zero, (T7.22)–(T7.24) imply that \( {\text{q}}_{{ \bullet {\text{ds,c}}}} -\upphi_{{ \bullet {\text{ds}},{\text{c}}}} = 0 \).

  19. 19.

    By looking at AVH’s equation (12) and the equation that follows immediately in their text, we deduced that (7.61) is a valid representation of the AVH treatment of prices translated into our simple model. We confirmed this by reproducing the simulations reported by AVH and observing that in these simulations the market prices for sd,c move in the same way for all d despite differences across d in ϕsd,c.

  20. 20.

    See the concluding paragraph of Appendix 4.1.

  21. 21.

    Equations (7.64)–(7.66) correspond to AVH’s equations (23) and (24).

References

  • Akgul, Z., Villoria, N. B., & Hertel, T. W. (2016). GTAP-HET: Introducing firm heterogeneity into the GTAP model. Journal of Global Economic Analysis, 1(1), 111–180.

    Article  Google Scholar 

  • Balistreri, E., & Rutherford, T. (2013). Computing general equilibrium theories of monopolistic competition and heterogeneous firms (chapter 23). In P.B. Dixon, & D.W. Jorgenson (Eds), Handbook of computable general equilibrium modeling (pp. 1513–1570). Elsevier.

    Google Scholar 

  • Hertel, T. W. (Ed.). (1997). Global trade analysis: Modeling and applications. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Melitz, Marc J. (2003). The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica, 71(6), 1695–1725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Dixon .

7.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 21247 kb)

Appendices

Appendix 7.1: GEMPACK Program for an A2M System: Solving BasicArmington and MelitzGE

This appendix contains GEMPACK code for the A2M system that can generate solutions for the BasicArmington model and the MelitzGE model. The code, together with zipped simulations from Sect. 7.4 can be downloaded using the Electronic Supplementary Material, see footnote at the opening page of this chapter. A2M closures for the BasicArmington and MelitzGE models are at the end of the appendix.

Sections A7.1.1–A7.1.6 is the code for the BasicArmington model, including a welfare decomposition. These sections can be thought of as representing a typical stand-alone Armington model. Sections A7.1.7–A7.1.11 are the additional material required for the conversion from Armington to Melitz. In the case of the BasicArmington model, the inclusion of the additional material requires no alteration to the code of the Armington model.

Being able to convert from Armington to Melitz without altering the Armington model has important practical advantages. When this is possible, it means that we can perform Melitz computations starting from an Armington model, which may be large and complex, without having to undertake time-consuming work in understanding all of the details of the original model or having to reconfigure it. However, in practical applications, alterations of the Armington code may be required. For example, if the original Armington model does not include suitable factory-door taxes [txMelsd,c], these need to be added. Fortunately, our experience reported in Sect. 7.5 in creating an A2M system for GTAP suggests that the alterations to the original Armington model will usually be minimal.

  • GEMPACK code

  • Closures

Table 7.9 lists in GEMPACK code two closures (exogenous variables) for the A2M system: one for generating solutions to the BasicArmington model and the other for generating solutions for MelitzGE. The relationship between the two closures is discussed in Sect. 7.2.

Table 7.9 Closures for A2M system: solving the BasicArmington model or MelitzGEa

Appendix 7.2: Another Decomposition of Welfare for Armington and Melitz

In this appendix we derive the welfare decomposition set out in Eq. (7.29). The derivation uses the equations in Table 7.1 for the BasicArmington model. Notation is given in Table 7.2. The derivation is similar to that in Appendix 6.4. However, there are differences, e.g. new variables, aaMel and txMel, that were not in the earlier decomposition. Then we introduce Melitz equations to derive (7.35), (7.36) and (7.37).

We define the percentage change in welfare for country d as

$$ {\text{welfare}}_{\text{d}} = \sum\limits_{\text{c}} {{\text{MU}}_{\text{d,c}} } * {\text{q}}_{\text{d,c}} $$
(7.38)

where MUd,c is the share of d’s household expenditure that is devoted to commodity c. We assume fmud in (T7.9) of Table 7.1 is zero. Then

$$ {\text{welfare}}_{\text{d}} = \sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *\left( {{\text{gdp}}_{\text{d}} - {\text{p}}_{{{\text{d}},{\text{c}}}} } \right) $$
(7.39)

Because the MUd,c’s sum to one over c, (7.39) can be written as

$$ {\text{welfare}}_{\text{d}} = {\text{gdp}}_{\text{d}} - \sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *{\text{p}}_{{{\text{d}},{\text{c}}}} $$
(7.40)

Combining (7.40), (T7.13) and (T7.7) gives

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\left[ {{\text{w}}_{\text{d}} + \ell {\text{tot}}_{\text{d}} } \right] + 100*\sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{drevm}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + 100*\sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{drevx}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad - {\text{GDP}}_{\text{d}} *\sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *\left[ {\sum\limits_{\text{s}} {{\text{SHA}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{p}}_{{ \bullet {\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} } \right]} } \right] \\ \end{aligned} $$
(7.41)

Substituting from (T7.14) and (T7.15) into (7.41) leads to

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\left[ {{\text{w}}_{\text{d}} + \ell {\text{tot}}_{\text{d}} } \right] \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left[ {\begin{array}{*{20}c} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{qcount}}_{{{\text{sd}},{\text{c}}}} + {\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} + {\text{tm}}_{{{\text{sd}},{\text{c}}}} } \right]} \\ { - {\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{qcount}}_{{{\text{sd}},{\text{c}}}} + {\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } \right]} \\ \end{array} } \right]} } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left[ {\begin{array}{*{20}c} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*\left[ {{\text{qcount}}_{{{\text{ds}},{\text{c}}}} + {\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} + {\text{txMel}}_{{{\text{ds}},{\text{c}}}} } \right]} \\ { - {\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*\left[ {{\text{qcount}}_{{{\text{ds}},{\text{c}}}} + {\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} } \right]} \\ \end{array} } \right]} } \\ & \quad - {\text{GDP}}_{\text{d}} *\sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *\left[ {\sum\limits_{\text{s}} {{\text{SHA}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{p}}_{{ \bullet {\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} } \right]} } \right] \\ \end{aligned} $$
(7.42)

Rearranging we obtain

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\left[ {{\text{w}}_{\text{d}} + \ell {\text{tot}}_{\text{d}} } \right] \\ & \quad { + }\sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right)*{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{qcount}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right)*{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{qcount}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*\left[ {{\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} + {\text{txMel}}_{{{\text{ds}},{\text{c}}}} } \right]} } \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} } } \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left[ {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{tm}}_{{{\text{sd}},{\text{c}}}} } \right]} } \\ & \quad - {\text{GDP}}_{\text{d}} *\sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *\left[ {\sum\limits_{\text{s}} {{\text{SHA}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{p}}_{{ \bullet {\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} } \right]} } \right] \\ \end{aligned} $$
(7.43)

In BasicArmington there are no transport costs and no intermediate inputs. Consequently,

$$ {\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORY}}({\text{d}},{\text{s}},{\text{c}}) = {\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}}) = {\text{VCIF}}({\text{d}},{\text{s}},{\text{c}}) $$
(7.44)

and

$$ {\text{W}}_{\text{d}} {\text{LTOT}}_{\text{d}} = \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})} } $$
(7.45)

Working with these relationships and using (T7.1)–(T7.4) we reach:

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\ell {\text{tot}}_{\text{d}} \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right)*{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{qcount}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right)*{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{qcount}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} } }* {\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{pfob}}_{{{\text{ds}},{\text{c}}}} \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{aoMel}}_{{{\text{d}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{tm}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad - {\text{GDP}}_{\text{d}} *\sum\limits_{\text{c}} {{\text{MU}}_{{{\text{d}},{\text{c}}}} } *\sum\limits_{\text{s}} {{\text{SHA}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{p}}_{{ \bullet {\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} } \right]} \\ \end{aligned} $$
(7.46)

Now we work on the last term of (7.46). We assume that country d consumes all of its GDP (zero trade deficit). Under this assumption \( {\text{GDP}}_{\text{d}} *{\text{MU}}_{{{\text{d}},{\text{c}}}} *{\text{SHA}}({\text{s}},{\text{d}},{\text{c}}) = {\text{VPUR}}({\text{s}},{\text{d}},{\text{c}}) \) where VPUR(s,d,c) is household expenditure in d on commodity c sent from s. Then using (T7.5) we obtain:

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\ell {\text{tot}}_{\text{d}} \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right)*{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{qcount}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right)*{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{qcount}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} } }* {\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{pfob}}_{{{\text{ds}},{\text{c}}}} \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{aoMel}}_{{{\text{d}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VPUR}}({\text{s}},{\text{d}},{\text{c}})*{\text{aaMel}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{tm}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VPUR}}({\text{s}},{\text{d}},{\text{c}})*\left[ {{\text{pcif}}_{{ \bullet {\text{sd}},{\text{c}}}} + {\text{tm}}_{{{\text{sd}},{\text{c}}}} } \right]} } \\ \end{aligned} $$
(7.47)

Because \( {\text{TM}}_{{{\text{sd}},{\text{c}}}} *{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}}) = {\text{VPUR}}({\text{s}},{\text{d}},{\text{c}}) \), the last three terms in (7.47) contribute zero. Leaving these terms out and using (T7.8) and (T7.1)–(T7.4), we find that

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\ell {\text{tot}}_{\text{d}} + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right)*{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{q}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} } }* {\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} + {\text{txMel}}_{{{\text{ds}},{\text{c}}}} - {\text{aaMel}}_{{{\text{ds}},{\text{c}}}} ] \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{s}},{\text{c}}}} } } + {\text{txMel}}_{{{\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} ] \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{aoMel}}_{{{\text{d}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{aaMel}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right)*{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } } \\ \end{aligned} $$
(7.48)

Recognizing that the “diagonal” terms in the second and third lines on the RHS of (7.48) cancel and rearranging we obtain

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\ell {\text{tot}}_{\text{d}} + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right) * {\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{q}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{{{\text{s}} \ne {\text{d}}}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} } }* {\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} + {\text{txMel}}_{{{\text{ds}},{\text{c}}}} - {\text{aaMel}}_{{{\text{ds}},{\text{c}}}} ] \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{{{\text{s}} \ne {\text{d}}}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{s}},{\text{c}}}} } } + {\text{txMel}}_{{{\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} ] \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } } \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{q}}_{{{\text{ds}},{\text{c}}}} } } - {\text{aaMel}}_{{{\text{ds}},{\text{c}}}} - {\text{aoMel}}_{{{\text{d}},{\text{c}}}} ] \\ \end{aligned} $$
(7.49)

Using (T7.8), (T7.12) and (T7.10) and rearranging gives:

$$ \begin{aligned} {\text{GDP}}_{\text{d}} *{\text{welfare}}_{\text{d}} & = {\text{W}}_{\text{d}} *{\text{LTOT}}_{\text{d}} *\ell {\text{tot}}_{\text{d}} + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TM}}_{{{\text{sd}},{\text{c}}}} - 1} \right)*{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*{\text{q}}_{{{\text{sd}},{\text{c}}}} } } \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{{{\text{s}} \ne {\text{d}}}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} } } *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{d}},{\text{c}}}} + {\text{txMel}}_{{{\text{ds}},{\text{c}}}} - {\text{aaMel}}_{{{\text{ds}},{\text{c}}}} ] \\ & \quad - \sum\limits_{\text{c}} {\sum\limits_{{{\text{s}} \ne {\text{d}}}} {{\text{VCIF}}({\text{s}},{\text{d}},{\text{c}})*[{\text{pfactory}}_{{ \bullet {\text{s}},{\text{c}}}} } } + {\text{txMel}}_{{{\text{sd}},{\text{c}}}} - {\text{aaMel}}_{{{\text{sd}},{\text{c}}}} ] \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{q}}_{{{\text{ds}},{\text{c}}}} } } - \ell_{{{\text{d}},{\text{c}}}} ] \\ & \quad + \sum\limits_{\text{c}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right){\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*} } \ell_{{{\text{d}},{\text{c}}}} \\ \end{aligned} $$
(7.50)

Then using (7.30), (T7.2) and (T7.3) we quickly arrive at (7.29).

If industry c is treated as Armington, then under standard assumptions aoMeld,c and aaMelsd,c are zero and TXsd,c equals one. Under these conditions, the c component of the combined last two terms in (7.49), and consequently in (7.50), is zero. Following the notation introduced in (7.35), these two terms can now be written as

$$ \begin{aligned} \Delta {\text{Efficiency}}_{\text{d}} & = \sum\limits_{{{\text{c}} \in {\text{M}}}} {\sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*[{\text{q}}_{{{\text{ds}},{\text{c}}}} - \ell_{{{\text{d}},{\text{c}}}} ]} } \\ & \quad + \sum\limits_{{{\text{c}} \in {\text{M}}}} {\sum\limits_{\text{s}} {\left( {{\text{TX}}_{{{\text{ds}},{\text{c}}}} - 1} \right){\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*\ell_{{{\text{d}},{\text{c}}}} } } \\ \end{aligned} $$
(7.51)

where M is the set of Melitz industries. Because for Melitz industries the collection of factory-door taxes is fixed on zero, the second term on the RHS of (7.51) is zero. Then using

$$ {\text{W}}_{\text{d}} {\text{L}}_{\text{d,c}} = \sum\limits_{\text{s}} {{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})} $$
(7.52)

we establish (7.35):

$$ \Delta {\text{Efficiency}}_{\text{d}} = \sum\limits_{{{\text{c}} \in {\text{M}}}} {[\{ \sum\limits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } } \} - {\text{W}}_{\text{d}} {\text{L}}_{{{\text{d}},{\text{c}}}} *\ell {}_{{{\text{d}},{\text{c}}}}] $$
(7.53)

In deriving (7.36) and (7.37) we restrict attention to Melitz industries, c ∈ M. Thus, we assume that the shift variables in (T7.19) and (T7.20) are zero. We start the derivation with (T7.20). Writing this equation from the point of view of country d, cancelling out the wage terms, and assuming that hd,c and fds,c are zero, we obtainFootnote 18

$$ \begin{aligned} & {\text{W}}_{\text{d}} *{\text{L}}_{{{\text{d}},{\text{c}}}} *\ell_{{{\text{d}},{\text{c}}}} \\ & \quad = \left[ {{{(\upsigma - 1)} \mathord{\left/ {\vphantom {{(\upsigma - 1)}\upsigma}} \right. \kern-0pt}\upsigma}} \right]*\sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{n}}_{{{\text{ds}},{\text{c}}}} } \\ & \quad + \left[ {{{(\upsigma - 1)} \mathord{\left/ {\vphantom {{(\upsigma - 1)} {(\upalpha \upsigma )}}} \right. \kern-0pt} {(\upalpha \upsigma )}}} \right]*\sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{n}}_{{{\text{d}},{\text{c}}}} } \\ & \quad + \left[ {{{(\upalpha - (\upsigma - 1))} \mathord{\left/ {\vphantom {{(\upalpha - (\upsigma - 1))} {(\upalpha \upsigma )}}} \right. \kern-0pt} {(\upalpha \upsigma )}}} \right]*\sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{n}}_{{{\text{ds}},{\text{c}}}} } \\ \end{aligned} $$
(7.54)

From here, (7.36) and (7.37) can be derived directly from Table 7.1 by a series of substitutions into (7.54). However, an alternative and instructive approach is to use a key result from Appendix 4.1: namely that costs in industry d,c are split in fixed proportions between production, set up of firms and setup on links. Noting that \( \sum\nolimits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})} = \sum\nolimits_{\text{s}} {{\text{TX}}_{{{\text{ds}},{\text{c}}}} *{\text{FACTORYV}}({\text{d}},{\text{s}},{\text{c}})} = {\text{W}}_{\text{d}} {\text{L}}_{{{\text{d}},{\text{c}}}} \), and using the fixed-split result we see from (7.54) that

$$ \ell_{{{\text{d}},{\text{c}}}} { = }\sum\limits_{\text{s}} {\frac{{{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})}}{{{\text{W}}_{\text{d}} {\text{L}}_{{{\text{d}},{\text{c}}}} }}*{\text{n}}_{{{\text{ds}},{\text{c}}}} } = {\text{n}}_{{{\text{d}},{\text{c}}}} $$
(7.55)

Using (T7.21) in (7.55) together with (T7.22)–(T7.24) gives

$$ 0 = \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*\upphi_{{ \bullet {\text{ds}},{\text{c}}}} } = \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{ \bullet {\text{ds}},{\text{c}}}} } $$
(7.56)

Via (T7.17), (T7.8) and (7.56),

$$ \begin{aligned} \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{n}}_{{{\text{ds}},{\text{c}}}} } & = \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } \\ & \quad - \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{aaMel}}_{{{\text{ds}},{\text{c}}}} } \\ \end{aligned} $$
(7.57)

Substituting (T7.19) into (7.57) gives

$$ \frac{\upsigma}{{\upsigma - 1}}\sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{n}}_{{{\text{ds}},{\text{c}}}} } = \sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } $$
(7.58)

and then from (7.55)

$$ {\text{W}}_{\text{d}} {\text{L}}_{{{\text{d}},{\text{c}}}} *\ell_{{{\text{d}},{\text{c}}}} { = }\frac{{\upsigma - 1}}{\upsigma}\sum\limits_{\text{s}} {{\text{MARKETV}}({\text{d}},{\text{s}},{\text{c}})*{\text{q}}_{{{\text{ds}},{\text{c}}}} } $$
(7.59)

We obtain (7.36) and (7.37) by substituting from (7.59) into (7.35).

Appendix 7.3: The Theory of GTAP-HET

Akgul, Villoria and Hertel (2016), hereafter AVH, describe what they call GTAP-HET or GTAP with heterogeneous firms. Their aim is to incorporate the Melitz specification of trade with firm heterogeneity into a readily accessible version of the GTAP model. In our view, they fall a little short of the mark.

The most obvious problem is their version of market prices. In Melitz, the price of good c delivered from region s to region d by the typical firm on the sd-link reflects this firm’s productivity. In terms of our BasicMelitz model (the Melitz model derived from the BasicArmington-A2M system) Melitz pricing requires

$$ {\text{pmarket}}_{{ \bullet {\text{sd}},{\text{c}}}} = {\text{w}}_{\text{s}} -\upphi_{{{\text{sd}},{\text{c}}}} \quad {\text{for}}\;{\text{all}}\;{\text{c}},{\text{s}},{\text{d}} , $$
(7.60)

where

\( {\text{pmarket}}_{{ \bullet {\text{sd}},{\text{c}}}} \) :

is the percentage change in the market price (price just beyond the factory door) of good c from country s destined for country d;

ws:

is the percentage change in the wage rate in country s (which, in our A2M system, is the cost of a unit of input to production of c in country s); and

ϕsd,c:

is the percentage change in the marginal productivity of the typical c-producing firm operating on the sd-link.

Instead of (7.60), AVH assume thatFootnote 19

$$ {\text{pmarket}}_{{ \bullet {\text{sd}},{\text{c}}}} {\text{ = w}}_{\text{s}} - \left( {\frac{{\upsigma - 1}}{\upsigma}} \right)*\upphi{\text{ave}}_{{{\text{s}},{\text{c}}}} \quad {\text{for}}\;{\text{all}}\;{\text{c}},{\text{s}},{\text{d}} $$
(7.61)

where ϕaves,c is the percentage change in the marginal productivity of the average c-producing firm in country s. This is defined more precisely in what follows. For now, the most important point is that the right hand side of (7.61) doesn’t depend on the destination d. The coefficient (σ − 1)/σ is the share of variable costs in the total costs of industry s,c.Footnote 20 It appears on the right hand side of (7.61) presumably because changes in ϕaves,c operate on variable costs per unit of output, not total costs.

Equation (7.61) is inconsistent with Melitz theory. But does this matter? To investigate this issue we produced a version of BasicMelitz in which AVH’s equation (7.61) replaces (7.60). To do this we started from the Melitz closure in Table 7.2. In this closure the percentage changes in the powers of export taxes [txMelsd,c] are endogenously determined by equation (T7.18), while the shift variables [ftxMelsd,c] in that equation are exogenous. Now, to move to the AVH version of the determination of market prices, we switched the closure so that txMelsd,c becomes exogenous and ftxMelsd,c becomes endogenous. With txMelsd, set on zero, equations (T7.1) and (T7.2) in the A2M system collapse to

$$ {\text{pmarket}}_{{ \bullet {\text{sd}},{\text{c}}}} = {\text{w}}_{\text{s}} - {\text{aoMel}}_{{{\text{s}},{\text{c}}}} \quad {\text{for}}\,{\text{all}}\,{\text{c}},{\text{s}},{\text{d}}, $$
(7.62)

By setting aoMels,c according to

$$ {\text{aoMel}}_{{{\text{s}},{\text{c}}}} = \left( {\frac{{\upsigma - 1}}{\upsigma}} \right) *\upphi{\text{ave}}_{{{\text{s}},{\text{c}}}} \quad {\text{for}}\,{\text{all}}\,{\text{c}},{\text{s}} $$
(7.63)

we can reproduce AVH pricing.

AVH specify equations to determine their ϕaves,c. In terms of the variables and equations in Table 7.1, their specification isFootnote 21:

$$ \begin{aligned}\upphi{\text{ave}}_{{{\text{s}},{\text{c}}}} & = \sum\limits_{\text{d}} {\text{SHRSMD}} ({\text{s}},{\text{d}},{\text{c}})*\upphi_{{{\text{sd}},{\text{c}}}} \\ & \quad + \left( {\frac{1}{\sigma - 1}} \right)*\sum\limits_{\text{d}} {{\text{SHRSMD}}({\text{s}},{\text{d}},{\text{c}})*} [{\text{n}}_{{{\text{sd}},{\text{c}}}} - {\text{nt}}_{{{\text{s}},{\text{c}}}} ]\quad {\text{for}}\;{\text{all}}\;{\text{c,s}} \\ \end{aligned} $$
(7.64)

where

SHRSMD(c,s,d):

is the share of destination d in the market value of sales by industry s,c; and

nts,c:

is the percentage change in the total number of links being operated by firms in industry s,c.

This is given by:

$$ {\text{nt}}_{{{\text{s}},{\text{c}}}} = \sum\limits_{\text{d}} {\text{SHARE}} ({\text{c}},{\text{s}},{\text{d}})*{\text{n}}_{{{\text{sd}},{\text{c}}}} \quad {\text{for}}\;{\text{all}}\;{\text{c}},{\text{s}} $$
(7.65)

where

SHARE(s,d,c):

is the number of c-producing firms on the sd-link [N(s,d,c)] divided by the total number of links being operated by firms in s,c.

That is,

$$ {\text{SHARE}}({\text{s}},{\text{d}},{\text{c}}) = \frac{{{\text{N}}({\text{s}},{\text{d}},{\text{c}})}}{{\sum\limits_{\text{dd}} {{\text{N}}({\text{s}},{\text{dd}},{\text{c}})} }}\quad {\text{for}}\;{\text{all}}\;{\text{c}},{\text{s}},{\text{d}} $$
(7.66)

Substituting from (7.64) and (7.65) into (7.63) we see that AVH’s model can be implemented in the A2M system by specifying aoMels,c according to

$$ \begin{aligned} {\text{aoMel}}_{{{\text{s}},{\text{c}}}} & = \frac{{(\upsigma - 1)}}{\upsigma }*\sum\limits_{\text{d}} {\text{SHRSMD}} ({\text{s}},{\text{d}},{\text{c}})*\upphi_{{{\text{sd}},{\text{c}}}} \\ & \quad + \frac{1}{\upsigma}*\sum\limits_{\text{d}} {{\text{SHRSMD}}({\text{s}},{\text{d}},{\text{c}})} \\&\quad *[{\text{n}}_{{{\text{sd}},{\text{c}}}} - \sum\limits_{\text{k}} {\text{SHARE}} ({\text{c}},{\text{s}},{\text{k}})*{\text{n}}_{{{\text{sk}},{\text{c}}}} ]\quad {\text{for}}\;{\text{all}}\;{\text{c,s}} \\ \end{aligned} $$
(7.67)

In the Melitz closure in Table 7.2, aoMels,c was already endogenous. Adding another equation to determine it requires endogenization of a currently exogenous similarly dimensioned variable. This variable has to be dcolrevxs,c: with all the rates, txMelsd,c, exogenous as required for the AVH specification of market prices, collection of revenue from destination specific factory-door taxes on s,c firms must be endogenous.

We are now ready to answer the question we posed earlier: Does omitting destination-specific pricing from the Melitz model make much difference? In Table 7.10 we compare Melitz welfare results from Table 7.4 with welfare results computed under AVH assumptions, that is with: txMelsd,c exogenous on zero; ftxMelsd,c endogenous; aoMels,c specified according to (7.67); dcolrevxsd,c endogenous; and the rest of the closure the same as Melitz in Table 7.2. The comparison in Table 7.10 strongly suggests that the answer to our question is yes.

Table 7.10 BasicArmington-A2M simulations: Melitz and AVH results for the effects of a 10% tariff imposed by country 2 on all imports from country 1 (percentage changes)

On further investigation we found, under AVH’s treatment of market prices (no destination specificity), that variations in the specification of aoMels,c (and hence ϕaves,c) have no effect on welfare or other variables of economic significance such as qd,c, gdpd, and ws. In fact aoMels,c can be treated as exogenous and given any value. Thus, AVH’s use of the variable ϕaves,c is not only inconsistent with Melitz but its specification via (7.64)–(7.66) has no relevance for AVH’s results.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dixon, P.B., Jerie, M., Rimmer, M.T. (2018). Converting an Armington Model into a Melitz Model: Giving Melitz Sectors to GTAP. In: Trade Theory in Computable General Equilibrium Models. Advances in Applied General Equilibrium Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-10-8325-9_7

Download citation

Publish with us

Policies and ethics