Skip to main content

Wastewater Algae to Value-Added Products

  • Chapter
  • First Online:
Waste to Wealth

Abstract

Globally, treatment and management of wastewater are a serious challenge. Voluminous wastewaters are generated on a day-to-day basis that is being either partly treated or untreated finds its ways into surface and groundwater thus enriching the systems with nutrients, pollutants and pathogens. In purview of the increasing water scarcity, rapid water deterioration, higher primary productivity in surface waters due to nutrient enrichment, towering wastewater production and complications related to its treatment, the understanding of water footprint, underlying mechanisms of wastewater treatment and transformation of terrestrial nutrients into value-added products and various downstream processes for their recovery needs to be understood. In this context, the algal treatment systems not only provides a simple and economical solution to wastewater treatment but also aids in the production of many valued bio-based products like lipids as feedstock for biofuels, single-cell proteins, Omega 3 fatty acids, carotenoids as astaxanthin and β-Carotene. The present chapter throws light on various mechanisms and strategies of wastewater transformations into value-added products while evaluating the techno-economics and feasibility of such systems for assessing its potential to be a bio-based industry. Various strategies for algal species selection targeting specific wastewater pollutants grown either as natural population or as engineered consortia with numerous wastewater treatment approaches until the production of valorized biomass is being discussed. Lastly, key techno-economics, environmental challenges and the scope of wastewater transformations into bio-based products are enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Arenas EG, Palacio R, Juantorena AU, Fernando SEL, Sebastian PJ (2016) Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges. Int J Ene Res (inpress)

    Google Scholar 

  • Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2(2):164–173

    Article  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar–production and properties. Bioresour Technol 102(2):1886–1891

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Paul NA, De Nys R (2012) Algal biochar: effects and applications. GCB Bioene 4(1):61–69

    Article  CAS  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23(3):321–335

    Article  Google Scholar 

  • Brock T (1989) A textbook of industrial microbiology. Sinauer Associates Inc, Sunderland, MA, pp 306–316

    Google Scholar 

  • Brown A, Knights B, Conway E (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochem 8(3):543–547

    Article  CAS  Google Scholar 

  • Cane R (1969) Coorongite and genesis of oil shale. Geochim Cosmochim Acta 33(2):257

    Article  CAS  Google Scholar 

  • Chamberlin JF (2016) Algal wastewater treatment and biofuel production: an assessment of measurement methods, and impact of nutrient availability and species composition. Theses and Dissertations. 1511

    Google Scholar 

  • Chanakya HN, Mahapatra DM, Sarada R, Abitha R (2013) Algal biofuel production and mitigation potential in India. Miti Adapt Strat Global Change 18:113–136

    Article  Google Scholar 

  • Chanakya HN, Mahapatra DM, Sarada R, Chauhan VS, Abitha R (2012) Sustainability of large-scale algal biofuel production in India. J IISc 92(1):63–98

    CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Tibtech 14:421–426

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzy Microbial Technol 20:221–224

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2007) Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis. Food chem 104(4):1580–1585

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuel by-products. Biotechnol Bioeng 109(7):1674–1684

    Article  CAS  Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, St. John MS, Green GF, Oswald WJ (1996) Phosphorous removal from wastewater using and algal turf scrubber. Water Sci Technol 33:191–198

    Google Scholar 

  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microbial biotechnol 8(2):190–209

    Article  CAS  Google Scholar 

  • Danis TG, Albanis TA, Petrakis DE, Pomonis PJ (1998) Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water Res 32:295–302

    Article  CAS  Google Scholar 

  • de Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51(11):1833–1842

    Article  Google Scholar 

  • Dong T, Knoshaug EP, Pienkos PT, Laurens LM (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Ene 177:879–895

    Article  CAS  Google Scholar 

  • Endo H, Hosoya H, Koibuchi T (1977) Growth yields of Chorella regularis in dark-heterotrophic continuous culture using acetate. J Ferment Technol 55:369–379

    CAS  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hyd Energy 41(30):12772–12798

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE, Jackson LL (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8(3):139–149

    Article  CAS  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam MA, Ho SH, Bai FW, Chang JS (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    Article  CAS  Google Scholar 

  • Harith Z, Yusoff F, Mohamed M, Shariff M, Din M, Ariff A (2009) Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8. doi:https://doi.org/10.4314/AJB.V8I21.66083

  • Hata J, Hua Q, Yang C, Shimizu KM, Taya M (2000) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells Marchantia polymorpha. Biochem Engin J 6:65–74

    Article  CAS  Google Scholar 

  • Hellingwerf KJ, De Mattos MT (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Biotechnol 142(1):87–90

    Article  CAS  Google Scholar 

  • Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Hoffman JP (1998) Wastewater treatment with suspended and nonsuspended algae: minireview. J Phycol 34:757–763

    Article  Google Scholar 

  • Kaplan D, Christiaen D, Arad S (1988) Binding of heavy metals by algal polysaccharides. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 179–187

    Google Scholar 

  • Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal nutrition. In: Richmond A (ed) CRC handbook of microalgal mass culture CRC press Boca Raton FL

    Google Scholar 

  • Kligerman DC, Bouwer EJ (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: a review. Ren Sust Ene Rev 52:1834–1846

    Article  CAS  Google Scholar 

  • Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014

    Article  CAS  Google Scholar 

  • Lomax C, Liu WJ, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao FJ (2011) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  Google Scholar 

  • Mahapatra DM (2015) Algal bioprocess development for sustainable wastewater treatment and biofuel production. Ph. D. Thesis. Indian Institute of Science, Bangalore, India

    Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2011a) Role of Macrophytes in urban sewage fed lakes. I Inte Omics Appl Biotech 2(7):1–9

    CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2011b) C: N ratio of sediments in a sewage fed Urban Lake. Inte J Geol 5(3):86–92

    Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2011c) Assessment of treatment capabilities of Varthur Lake, Bangalore. Inte J Env Tech Mgmt 14(1–4):84–102

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013a) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013b) Treatment efficacy of algae based sewage treatment plants. Env Mon Assess 185:7145–7164

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2014) Bioremediation and lipid synthesis of mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2016) Algae derived single-cell proteins: economic cost analysis and future prospects. Protein byproducts: transformation from environmental burden into value-added products, 1st edn. Elsevier, pp 275–301

    Google Scholar 

  • Mahapatra DM, Joshi NV, Ramachandra TV (2017) Insights to bioprocess and treatment competence of Urban wetlands. J Env Manage (accepted)

    Google Scholar 

  • Mahapatra DM, Ramachandra TV (2013) Algal biofuel: bountiful lipid from Chlorococcum sp. proliferating in municipal wastewater. Curr Sci 105:47–55

    CAS  Google Scholar 

  • Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochem 63(2):145–153

    Article  CAS  Google Scholar 

  • Martinez E, Camacho F, Jimenez JM, Espinola JB (1997) Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem 32(2):93–98

    Article  Google Scholar 

  • Maxwell J, Douglas A, Eglinton G, McCormick A (1968) The Botryococcenes—hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochem 7(12):2157–2171

    Article  CAS  Google Scholar 

  • Meireles LA, Guedes AC, Malcata FX (2003) Lipid class composition of the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J Agri Food Chem 51(8):2237–2241

    Article  CAS  Google Scholar 

  • Metzger P, Villarreal-Rosales E, Casadevall E (1991) Methyl-branched fatty aldehydes and fatty acids in Botryococcus braunii. Phytochem 30(1):185–191

    Article  CAS  Google Scholar 

  • Mogens H (2008) Biological wastewater treatment: principles modelling and design. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) ISBN: 9781843391883. Published by IWA Publishing, London, UK

    Google Scholar 

  • Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: a review. Ren Sust Ene Rev 43:961–972

    Article  CAS  Google Scholar 

  • Murata M, Nakazoe J (2001) Production and Use of marine aigae in Japan. JARQ 35(4):281–290

    Article  Google Scholar 

  • Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2016) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Poll. 220, Part A:2–12. http://dx.doi.org/10.1016/j.envpol.2016.09.002

  • Neilson AH, Blankley WF, Lewin RA (1973) Growth with organic carbon and energy sources. In: Stein JRD (ed) Handbook of phycological methods.Cambridge University Press Cambridge, pp 275–285

    Google Scholar 

  • Nevenzel J (1989) Biogenic hydrocarbons of marine organisms. Marine Biog Lipids, Fats Oils 1:3–72

    Google Scholar 

  • Ogawa T, Terui G (1972) Growth kinetics of spirulina platensis in autotrophic and mixotrophic cultures. Proceedings of IV IFS: fermentation technology today, pp 543–549

    Google Scholar 

  • Orus MI, Marco E, Martinez F (1991) Suitability of chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresour Technol 38:179–184

    Article  CAS  Google Scholar 

  • Oswald W, Gotaas H (1957) Photosynthesis in sewage treatment. Trans Amer Soc Civil Eng, United States, p 122

    Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. https://doi.org/10.1016/j.biortech.2010.06.035

    Article  CAS  Google Scholar 

  • Qin J (2010) Hydrocarbons from algae. In: Handbook of hydrocarbon and lipid microbiology, Springer, pp 2817–2826

    Google Scholar 

  • Ramachandra TV, Mahapatra DM, Asulabha KS, Sincy V, Bhat S (2014) Integrated wetlands ecosystem: Sustainable model to mitigate water crisis in Bangalore (2014) ENVIS technical report-76. Environmental Information System, CES, IISc, Bangalore, p 560012

    Google Scholar 

  • Ramachandra TV, Mahapatra DM (2015) Science of carbon footprint analysis. In: The handbook of carbon footprint assessment CRC press, Taylor & Francis Group., pp 1–44

    Google Scholar 

  • Ramachandra TV, Mahapatra DM, Bhat S, Joshi NV (2015) Biofuel production along with remediation of sewage water through algae. In: Algae and environmental sustainability, vol 7. Developments in Applied Phycology, Springer series, pp 33–51

    Google Scholar 

  • Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering vs. gasoline secreting diatom solar panels. Ind Eng Chem 48(19):8769–8788

    Google Scholar 

  • Ramachandra TV, Mahapatra DM, Samantray S, Joshi NV (2013) Biofuel from urban wastewater: scope and challenges. Ren Sus Ene Rev 21:767–777

    Article  CAS  Google Scholar 

  • Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nut Res 52:237–292

    Article  CAS  Google Scholar 

  • Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18(6):459–479

    Article  Google Scholar 

  • Renault F, Sancey B, Badot P, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027

    Article  CAS  Google Scholar 

  • Ryckebosch E, Bermúdez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26(3):1501–1510

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermue MH, Wijffels RH (2010) Harvesting of microalgae by bioflocculation. J Appl Phycol 23:849–855

    Article  Google Scholar 

  • Sambusiti C, Bellucci M, Zabaniotou, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review. Ren Sust Ene Rev 44:20–36

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Current Opi Biotecnol 21(3):277–286

    Article  CAS  Google Scholar 

  • Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Expt Botany, 130

    Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Ene 88(10):3548–3555

    Article  CAS  Google Scholar 

  • Sivakumara G, Xu J, Thompson RW, Yang Y, Smith PR, Weathers PJ (2012) A review on integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation: a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Poll 58:19–34

    Article  CAS  Google Scholar 

  • Tannenbaum SR, Mateles RI (1968) Single cell protein. Science 4(5):87

    Google Scholar 

  • Tannenbaum SR, Wang DI (1975) Single-cell protein. MIT Press Cambridge, MA

    Google Scholar 

  • Tseng C (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13(4):375–380

    Article  Google Scholar 

  • Wang G, Wang T (2012) Characterization of lipid components in two microalgae for biofuel application. J Amer Oil Chem Soc 89(1):135–143

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Xu L, Zhao Y, Doherty L, Hu Y, Hao X (2016) The integrated processes for wastewater treatment based on the principle of microbial fuel cells: a review. Crit Rev Env Sci Technol 46(1):60–91

    Article  CAS  Google Scholar 

  • Zhang Ch-C, Jeanjean R, Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol Rev 161:285–292

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang YM Chen F (1998) Kinetic models for phycocyanin production by high cell density mixotrophic culture of the microalga Spirulina platensis. J Ind Microbiol 21:283–288

    Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermos tolerant microalga Chlorella sorokiniana for biofuel production. Appl ene 108:281–287

    Article  CAS  Google Scholar 

  • Zhou WG, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal palletization assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167(2):214–228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for Funding and Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durga Madhab Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, D.M., Varma, V.S., Muthusamy, S., Rajendran, K. (2018). Wastewater Algae to Value-Added Products. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_16

Download citation

Publish with us

Policies and ethics