Skip to main content

Biodiesel from Microalgae

  • Chapter
  • First Online:
Waste to Wealth

Abstract

Widespread application of non-renewable energy resources such as fossil fuels is limited mainly due to their adverse environmental impacts by increasing the amount of greenhouse gas (GHG) emissions. A solution to limit fossil-fuel pollution is the use of renewable energy resources. In the recent years, microalgae have received considerable attention as a suitable feedstock for biofuel production. Microalgae can grow in various aquatic wastewater media and are able to produce biomass, lipids, and hydrocarbons. Using different types of wastewaters as media for algae cultivation could not only reduce their freshwater footprint but also the costs associated with algae cultivation and biofuel production. This chapter presents an overview on various algal cultivation systems as well as on optimization of algal cultivations, while downstream processes including harvesting and drying of microalgae and lipid extraction systems are also reviewed and discussed. Subsequently, different microalgae biofuel production pathways are presented. Finally, the applications of microalgae in integrated systems, i.e., in wastewater treatment and biodiesel production systems and biofixation of carbon, are scrutinized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Shanab RA, Ji MK, Kim HC, Paeng KJ, Jeon BH (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage 115:257–264

    Google Scholar 

  • Ajayan K V, Selvaraju M, Thirugnanamoorthy K (2011) Growth and Heavy Metals Accumulation Potential of Microalgae Grown in Sewage Wastewater and Petrochemical Effluents. Pak J Bio Sci 14(16):805–811

    Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15(3):1615–1624

    Google Scholar 

  • Al Hattab M, Ghaly A, Hammoud A (2015) Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renew Energy Appl 5:1000154

    Google Scholar 

  • Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manage 113:170–183

    Google Scholar 

  • Alketife AM, Judd S, Znad H (2017) Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ Technol 38(1):94–102

    Google Scholar 

  • Ananadhi Padmanabhan MR, Stanley SA (2012) Microalgae as an oil producer for biofuel applications. Res J Recent Sci 1(3):57–62

    Google Scholar 

  • Atabani AE, da Silva César A (2014) Calophyllum inophyllum L.-A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew Sustain Energy Rev 37:644–655

    Google Scholar 

  • Balat M, Balat M, KÄrtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers Manage 50(12):3147–3157

    Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev 41:1489–1500

    Google Scholar 

  • Batista AP, Ambrosano L, Graça S, Sousa C, Marques PA, Ribeiro B … Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresour Technol 184: 230–235

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Google Scholar 

  • Bhatt NC, Panwar A, Bisht TS, Tamta S (2014) Coupling of algal biofuel production with wastewater. Sci World J Article ID 210504

    Google Scholar 

  • Biller P, Riley R, Ross A (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Biores Technol 102(7):4841–4848

    Google Scholar 

  • Bohutskyi P, Kula T, Kessler BA, Hong Y, Bouwer EJ, Betenbaugh MJ, Allnutt FT (2014) Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. BioEnergy Res 7(4):1174–1185

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgaeâ-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102

    Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646

    Google Scholar 

  • Bwatanglang IB, Faruq M, Gupta AK, Yusof NA (2015) Algae-derived biomass for sustainable and renewable biofuel production. In: Agricultural biomass based potential materials. Springer International Publishing, Berlin, pp 341–373

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369

    Google Scholar 

  • Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126(2):361–373

    Google Scholar 

  • Chae S, Hwang E, Shin H (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Biores Technol 97(2):322–329

    Article  CAS  Google Scholar 

  • Chan A, Salsali H, McBean E (2013) Heavy metal removal (copper and zinc) in secondary effluent from wastewater treatment plants by microalgae. ACS Sustain Chem Eng 2(2):130–137

    Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880

    Google Scholar 

  • Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1(2):19–32

    Google Scholar 

  • Chen WT, Zhang Y, Zhang J, Yu G, Schideman LC, Zhang P, Minarick M (2014) Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Biores Technol 152:130–139

    Article  CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Chevalier P, Proulx D, Lessard P, Vincent W, De la NoÃŒe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12(2):105–112

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das K (2010a) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Biores Technol 101(17):6751–6760

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010b) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Biores Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29(6):686–702

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48(6):1146–1151

    Article  CAS  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24(3):329–337

    Article  CAS  Google Scholar 

  • de Alva MS, Luna-Pabello VM, Cadena E, Ortiz E (2013) Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour Technol 146:744–748

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Biores Technol 101(6):1611–1627

    Google Scholar 

  • DemirbaÅŸ A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag 44(13):2093–2109

    Google Scholar 

  • Demirbas A (2007) Converting biomass derived synthetic gas to fuels via fisher-tropsch synthesis. Energy Sour Part A 29(16):1507–1512

    Google Scholar 

  • Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50(9):2239–2249

    Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer Science & Business Media, Berlin

    Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Google Scholar 

  • Demirbas E, Kobya M, Senturk E, Ozkan T (2004) Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sa 30(4):533–539

    Google Scholar 

  • Deng DJ, Lu ZM (2013) Differentiation and adaptation epigenetic networks: translational research in gastric carcinogenesis. Chin Sci Bull 58(1):1–6

    Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79(2):117–123

    Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2(8):857–864

    Google Scholar 

  • Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM (2015) High protein-and high lipid-producing microalgae from northern australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol 3:53

    Google Scholar 

  • Eroglu E, Smith SM, Raston CL (2015) Application of various immobilization techniques for algal bioprocesses. In: Biomass and biofuels from microalgae. Springer International Publishing, Berlin, pp 19–44

    Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Paper presented at the twenty-sixth symposium on biotechnology for fuels and chemicals

    Google Scholar 

  • Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Biores Technol 102(1):101–105

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Google Scholar 

  • Gariazzo C, Lamberti M, Hänninen O, Silibello C, Pelliccioni A, Porta D … Forastiere F (2015) Assessment of population exposure to Polycyclic Aromatic Hydrocarbons (PAHs) using integrated models and evaluation of uncertainties. Atmos Environ 101:235–245

    Google Scholar 

  • Gattullo CE, Bährs H, Steinberg CE, Loffredo E (2012) Removal of bisphenol a by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotech Mol 4(1):1–36

    Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Biores Technol 169:27–32

    Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison ST (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 98(5):2345–2356

    Article  CAS  Google Scholar 

  • Günerken E, d’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. Rsc Adv 2(16):6380–6388

    Article  CAS  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91(1):116–121

    Article  CAS  Google Scholar 

  • Haritash A, Kaushik C (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  Google Scholar 

  • Hattab MA, Ghaly A (2015) Microalgae oil extraction pretreatment methods: critical review and comparative analysis. J Fundam Renew Energy Appl 5:172

    Article  Google Scholar 

  • Hayyan A, Alam MZ, Mirghani ME, Kabbashi NA, Hakimi NINM, Siran YM, Tahiruddin S (2010) Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Biores Technol 101(20):7804–7811

    Article  CAS  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14

    Article  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  CAS  Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Poll Bull 56(8):1400–1405

    Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Google Scholar 

  • Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P … Ruan R (2012) Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol 126:71–79

    Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Huang X, Wei L, Huang Z, Yan J (2014) Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J Appl Phycol 26(1):105–114

    Google Scholar 

  • Islam MA, Magnusson M, Brown RJ, Ayoko GA, Nabi MN, Heimann K (2013) Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 6(11):5676–5702

    Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23(10):5179–5183

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85(3):525–534

    Article  CAS  Google Scholar 

  • Kalla N, Khan S (2016) Effect of nitrogen, phosphorus concentrations, pH and salinity ranges on growth, biomass and lipid accumulation of Chlorella vulgaris. Int J Pharm Sci Res 7(1):397

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Biores Technol 101(19):7201–7210

    Article  CAS  Google Scholar 

  • Kawaroe M, Prartono T, Sunuddin A, Saputra D (2016) Marine microalgae Tetraselmis suecica as flocculant agent of bio-flocculation method. HAYATI J Biosci 23(2):62–66

    Article  Google Scholar 

  • Khan M, Yoshida N (2008) Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Biores Technol 99(3):575–582

    Article  CAS  Google Scholar 

  • Kiss AA, Dimian AC, Rothenberg G (2007) Biodiesel by catalytic reactive distillation powered by metal oxides. Energy Fuels 22(1):598–604

    Article  CAS  Google Scholar 

  • Kolesárová N, Hutňan M, Bodík I, Å palková V (2011) Utilization of biodiesel by-products for biogas production. BioMed Res Int

    Google Scholar 

  • Kong Q-X, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160(1):9–18

    Article  CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Google Scholar 

  • Krishna AR, Dev L, Thankamani V (2012) An integrated process for Industrial effluent treatment and Biodiesel production using Microalgae. Res Biotechnol 3(1)

    Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J et al (2010a) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Van Langenhove H (2010b) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  CAS  Google Scholar 

  • Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H (2010c) A hollow fiber membrane photoâ-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85(3):387–394

    Article  CAS  Google Scholar 

  • Kumar KS, Dahms H-U, Won E-J, Lee J-S, Shin K-H (2015) Microalgaeâ-A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Kumar P, Suseela MR, Toppo K (2011) Physico-chemical characterization of algal oil: a potential biofuel. Asian J Exp Biol Sci 2(3):493–497

    CAS  Google Scholar 

  • Laghari SM, Isa MH, Abdullah AB, Laghari AJ, Saleem H (2015) Microwave individual and combined pre-treatments on lignocellulosic biomasses. IOSR J Comput Eng 4(2):14–28

    Article  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenerg 46:89–101

    Google Scholar 

  • Lee HJ, Lee SY (2001) Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. Int J Multiph Flow 27(12):2043–2062

    Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Biores Technol 101(1):S75–S77

    Article  CAS  Google Scholar 

  • Lei AP, Hu ZL, Wong YS, Tam NFY (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98(2):273–280

    Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Biores Technol 102(23):10861–10867

    Google Scholar 

  • Liang Y (2013) Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy 104:860–868

    Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322

    Google Scholar 

  • Lu Q, Zhou W, Min M, Ma X, Chandra C, Doan YT … Chen P (2015) Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour Technol 198:189–197

    Google Scholar 

  • Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY (2014) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49(10):1723–1732

    Google Scholar 

  • Lv J, Guo J, Feng J, Liu Q, Xie S (2017) Effect of sulfate ions on growth and pollutants removal of self-flocculating microalga Chlorococcum sp. GD in synthetic municipal wastewater. Biores Technol 234:289–296

    Article  CAS  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25(3):855–865

    Google Scholar 

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–a mini review. Energy 78:104–113

    Google Scholar 

  • Malla FA, Khan SA, Sharma GK, Gupta N, Abraham G (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Biores Technol 83(1):47–54

    Google Scholar 

  • Meher L, Sagar DV, Naik S (2006) Technical aspects of biodiesel production by transesterificationâ-a review. Renew Sustain Energy Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Mirghaffari N, Moeini E, Farhadian O (2015) Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. J Appl Phycol 27(1):311–320

    Google Scholar 

  • Mittal A (2011) Biological wastewater treatment. Water Today 1:32–44

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  • Mondal P, Dang GS, Garg MO (2011) Syngas production through gasification and cleanup for downstream applications—recent developments. Fuel Process Technol 92(8):1395–1410

    Article  CAS  Google Scholar 

  • Morita M, Watanabe Y, Okawa T, Saiki H (2001) Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol Bioeng 74(2):136–144

    Article  CAS  Google Scholar 

  • Moser BR, Vaughn SF (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenerg 37:31–41

    Article  CAS  Google Scholar 

  • Mukherjee K, Saha R, Ghosh A, Saha B (2013) Chromium removal technologies. Res Chem Intermed 39(6):2267–2286

    Article  CAS  Google Scholar 

  • Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) comparison of Microalgae cultivation in Photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29

    Article  Google Scholar 

  • Nayak M, Thirunavoukkarasu M, Mishra BK (2013) Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide. J Microbiol Biotechnol 23(9):1260–1268

    Article  CAS  Google Scholar 

  • Niestroy J, Martínez AB, Band-Schmidt CJ (2014) Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium. EXCLI J 13:197

    Google Scholar 

  • Ndikubwimana T, Zeng X, Liu Y, Chang JS, Lu Y (2014) Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res 6:186–193

    Article  Google Scholar 

  • Ndikubwimana T, Zeng X, Murwanashyaka T, Manirafasha E, He N, Shao W, Lu Y (2016) Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels 9(1):47

    Article  CAS  Google Scholar 

  • Pandelova M, Piccinelli R, Kasham S, Henkelmann B, Leclercq C, Schramm K-W (2010) Assessment of dietary exposure to PCDD/F and dioxin-like PCB in infant formulae available on the EU market. Chemosphere 81(8):1018–1021

    Article  CAS  Google Scholar 

  • Park J, Craggs R, Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Biores Technol 102(1):35–42

    Article  CAS  Google Scholar 

  • Park J, Seo J, Kwon EE (2012) Microalgae production using wastewater: effect of light-emitting diode wavelength on microalgal growth. Environ Eng Sci 29(11):995–1001

    Article  CAS  Google Scholar 

  • Pereira FV, Gurgel LVA, Gil LF (2010) Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). J Hazard Mater 176(1):856–863

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Biores Technol 102(1):17–25

    Google Scholar 

  • Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol 79(19):6093–6101

    Article  CAS  Google Scholar 

  • Raheem A, Azlina WW, Yap YT, Danquah MK, Harun R (2015a) Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev 49:990–999

    Article  CAS  Google Scholar 

  • Raheem A, WAKG WA, Yap YT, Danquah MK, Harun R (2015b) Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv 5(88):71805–71815

    Article  CAS  Google Scholar 

  • Ramesh D (2013) Lipid identification and extraction techniques. In: Biotechnological applications of microalgae: biodiesel and value-added products, pp 89–97

    Google Scholar 

  • Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61

    Article  Google Scholar 

  • Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RBN, Saxena AK (2013) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53(5):440–450

    Article  CAS  Google Scholar 

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    Article  CAS  Google Scholar 

  • Richmond A (ed) (2008) Handbook of microalgal culture: biotechnology and applied phycology. Wiley, New Jersey

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Biores Technol 101(1):58–64

    Article  CAS  Google Scholar 

  • Sakarika M, Kornaros M (2016) Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Biores Technol 219:694–701

    Article  CAS  Google Scholar 

  • San Martín YB (2011) Bioremediation: a tool for the management of oil pollution in marine ecosystems. Biotecnol Apl 28(2):69–76

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397–407

    Article  CAS  Google Scholar 

  • Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–2373

    Article  CAS  Google Scholar 

  • Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16(4):291–296

    Article  CAS  Google Scholar 

  • Shilton A, Mara D, Craggs R, Powell N (2008) Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds. Water Sci Technol 58(1):253

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Singh D, Barrow CJ, Puri M, Tuli DK, Mathur AS (2016) Combination of calcium and magnesium ions prevents substrate inhibition and promotes biomass and lipid production in thraustochytrids under higher glycerol concentration. Algal Res 15:202–209

    Article  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  • Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenerg 66:159–167

    Article  CAS  Google Scholar 

  • Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M (2015) Biochemical modulation of lipid pathway in microalgae Dunaliella sp. for biodiesel production. BioMed Res Int

    Google Scholar 

  • Tan KWM, Lee YK (2016) The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels 9(1):255

    Article  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Biores Technol 102(3):3071–3076

    Article  CAS  Google Scholar 

  • The Guardian (2015) Pope Francis issues final call for unity at end of historic US visit. Available at https://www.theguardian.com/world/2015/sep/28/pope-francis-leaves-us-end-visit. Accessed on 19 June 2017

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342

    Article  CAS  Google Scholar 

  • Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Pet Inst 48(5):251

    Article  CAS  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Biores Technol 99(10):4021–4028

    Article  CAS  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CI, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4):43

    Article  CAS  Google Scholar 

  • Ullah K, Ahmad M, Sharma VK, Lu P, Harvey A, Zafar M … Anyanwu CN (2014) Algal biomass as a global source of transport fuels: overview and development perspectives. Prog Nat Sci: Mater Int 24(4):329–339

    Google Scholar 

  • Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5(3):331–349

    Article  CAS  Google Scholar 

  • Uthman H, Saka AA (2013) Comparatives study of production biodiesel from soybean oil and Jatropha Curcas seeds oil. Distrib Gener Altern Energy J 28(2):31–42

    Article  Google Scholar 

  • Valiente Moro C, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31(4):778–786

    Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Biores Technol 109:178–187

    Article  CAS  Google Scholar 

  • Veillette M, Nikiema J, Heitz M, Chamoumi M, Faucheux N (2012) Production of biodiesel from microalgae. INTECH Open Access Publisher, London

    Google Scholar 

  • Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Biores Technol 129:7–11

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  • Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Biores Technol 104:215–220

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    Article  CAS  Google Scholar 

  • Wu X, Ruan R, Du Z, Liu Y (2012) Current status and prospects of biodiesel production from microalgae. Energies 5(8):2667–2682

    Article  CAS  Google Scholar 

  • Xie Y, Li H, Wang X, Ng I S, Lu Y, Jing K (2014) Kinetic simulating of Cr (VI) removal by the waste Chlorella vulgaris biomass. J Taiwan Inst Chem Eng 45(4):1773–1782

    Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores Technol 101(14):5494–5500

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Biores Technol 175:537–544

    Google Scholar 

  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Biores Technol 101(1):S71–S74

    Article  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    Article  CAS  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Biores Technol 114:529–535

    Article  CAS  Google Scholar 

  • Zhang X (2015) Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, UK

    Google Scholar 

  • Zhang X, Rong J, Chen H, He C, Wang Q (2014) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front Energy Res 2:32

    CAS  Google Scholar 

  • Zhao Z, Jiang Y, Xia L, Mi T, Yan W, Gao Y, Hussain J (2014) Application of canonical correspondence analysis to determine the ecological contribution of phytoplankton to PCBs bioaccumulation in Qinhuai River, Nanjing, China. Environ Sci Pollut Res 21(4):3091–3103

    Article  CAS  Google Scholar 

  • Zhou N, Zhang Y, Wu X, Gong X, Wang Q (2011a) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Biores Technol 102(21):10158–10161

    Article  CAS  Google Scholar 

  • Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, Ruan R (2012) Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotechnol 168(2):348–363

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011b) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Biores Technol 102(13):6909–6919

    Article  CAS  Google Scholar 

  • Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci 6(12):3765–3779

    Google Scholar 

  • Zhu L, Wang Z, Takala J, Hiltunen E, Qin L, Xu Z, Yuan Z (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Biores Technol 137:318–325

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisam Tabatabaei or Mortaza Aghbashlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madadi, R., Tabatabaei, M., Aghbashlo, M., Zahed, M.A., Pourbabaee, A.A. (2018). Biodiesel from Microalgae. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_13

Download citation

Publish with us

Policies and ethics