Skip to main content

Biopolymers from Wastes to High-Value Products in Biomedicine

  • Chapter
  • First Online:
Waste to Wealth

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Biopolymers comprise a large variety of molecules with diverse chemical structures involving from polysaccharides to proteins, bioplastics, polyamides, polyesters, among others. Also, biopolymers are very abundant in nature and one major wastes of industrial and agricultural activities contributing to the environmental pollution. On the other side, the recent advances in micro- and nano-technologies in the biomedical field open a new window for their use in drug delivery, tissue engineering and many health-associated technologies. The production and physicochemical properties of the main biopolymers used in biomedical applications reported in the literature are reviewed in this chapter.

God forgives, men sometimes, Nature never

Los Piojos (2007)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg CM, Chen T, Payne GF (2002) Renewable resources and enzymatic processes to create functional polymers. Adapting materials and reactions from food processing. J Polym Environ 10:77–84

    Google Scholar 

  • Aberg CM, Chen T, Olumide A, Raghavan SR, Payne GF (2004) Enzymatic grafting of peptides from casein hydrolysate to chitosan. Potential for value-added byproducts from food-processing wastes. J Agric Food Chem 52:788–793

    Google Scholar 

  • Agri-Food Business Development Center via Nation Master. Agriculture statics. Banana production by country (2000). http://www.nationmaster.com/graph/agr ban pro-agriculture banana- production

  • Almazan O, Gonzalez L, Galvez L (1998) The sugar cane, its by-products and co-products; Asociación de Técnicos Azucareros de Cuba. Food and Agricultural Research Council, Mauritius, pp 13–25

    Google Scholar 

  • Almeida IF, Pereira T, Silva NHCS et al (2014) Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur J Pharm Biopharm 86:332–336

    Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    Google Scholar 

  • Anastas PT, Lankey RL (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289–295. https://doi.org/10.1039/b005650m

  • Anastas PT, Zimmerman JB (2016) Safer by design. Green Chem 18:4324

    Google Scholar 

  • Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Phil Trans R Soc B 364:1977–1984

    Google Scholar 

  • Angellier-Coussy H, Putaux J-L, Molina-Boisseau S et al (2009) The molecular structure of waxy maize starch nanocrystals. Carbohydr Res 344:1558–1566

    Google Scholar 

  • Anirudhan TS, Nair AS, Parvathy J (2016) Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm 109:61–71

    Google Scholar 

  • Annarita P, Anzelmo G, Fiorentino G, Nicolaus B, Tommonaro G, Di Donato P (2011) Polysaccharides from wastes of vegetable industrial processing: New opportunities for their eco-friendly re-use. In: Elnashar M (ed) Biotechnology of Biopolymers. InTech. https://doi.org/10.5772/16387

  • Arvanitoyannis IS, Ladas D, Mavromatis A (2006) Potential uses and applications of treated wine waste: a review. Int J Food Sci Technol 41:475–487

    Google Scholar 

  • Avrous L (2004) Biodegradable Multiphase Systems Based on Plasticized Starch: a Review. J Macromol Sci Part C Polym Rev 44:231–274

    Google Scholar 

  • Bardiya N, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple waste. Biores Technol 58:73–76

    Google Scholar 

  • Bauder J (2013) Cereal crop residues and plant nutrients. Montana State University Communications Services. http://www.montana.edu/cpa/news/wwwpb-archives/ag/baudr230.html

  • Behall K, Reiser S (1986) Effects of pectin on human metabolism. In: Chemistry and function of pectins. Am Chem Soc Symp 310:248–265

    Google Scholar 

  • BeMiller JN (1993) Starch Based Gums. In: BeMiller JN, Whistler RL (ed) Industrial Gums, 3rd ed. Academic Press, pp 579–600

    Google Scholar 

  • Bermúdez-Oria A, Rodríguez-Gutiérrez G, Rubio-Senent F, Lama-Muñoz A, Fernández-Bolaños J (2017) Complexation of hydroxytyrosol and 3,4-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydr Polym 163:292–300

    Google Scholar 

  • Bian Y-Z, Wang Y, Aibaidoula G, et al (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225. https://doi.org/10.1016/j.biomaterials.2008.09.036

  • Bilanovic DD, Malloy SH, Remeta P (2010) Solid or semi-solid state fermentation of xanthan on potato or potato waste. Assgn: Bemidji State University Foundation.US Patent Number: 07727747

    Google Scholar 

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408

    Google Scholar 

  • Bourgeois S, Gernet M, Pradeau D Andremont, A Fattal E (2006) Evaluation of critical formulation parameters influencing the bioactivity of β-lactamases entrapped in pectin beads. Sel Pap 15th Int Microencapsul Symp, vol 324, pp. 2–9

    Google Scholar 

  • Brinckmann J (2005) Collagens at a glance. Top Curr Chem 247:1–6

    Google Scholar 

  • Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J ClinNutr 69:30–42

    Google Scholar 

  • Browne S, Zeugolis DI, Pandit A (2013) Collagen: finding a solution for the source. Tissue Eng Part A 19:1491–1494

    Google Scholar 

  • Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA 103:12285–12290

    Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Google Scholar 

  • Bulpin PV, Welsh EJ, Morris ER (1982) Physical characterization of amylose-fatty acid complexes in starch granules and in solution. Starch 34:335–339

    Google Scholar 

  • Cacicedo ML, León IE, Gonzalez JS, Porto LM, Alvarez VA, Castro GR (2016) Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloid Surface B 140:421–429

    Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: Status and perspectives. Biores Technol 101:4754–4766

    Google Scholar 

  • Cataldo S, Cavallaro G, Gianguzza A, Lazzara G, Pettignano A, Piazzese D, Villaescusa I (2013) Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads. J Environ Chem Eng 1:1252–1260

    Google Scholar 

  • Catalina M, Cot J, Balu AM, Serrano-Ruiz JC, Luque R (2012) Tailor-made biopolymers from leather waste valorization. Green Chem 14:308–312

    Google Scholar 

  • Catalina M, Cot J, Borras M et al (2013) From waste to healing biopolymers: Biomedical applications of bio-collagenic materials extracted from industrial leather residues in wound healing. Mater (Basel) 6:1599–1607

    Google Scholar 

  • Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536

    Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:273–1335

    Google Scholar 

  • Chattopadhyay S, Raines RT (2015) Collagen-Based Biomaterials for Wound Healing. Biopolymers 101:821–833

    Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Google Scholar 

  • Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: An update on potential biomedical and pharmaceutical applications. Mar Drugs 13:5156–5186

    Google Scholar 

  • Chvapil M, Kronenthal L, Van Winkle W (1973) Medical and surgical applications of collagen. Int Rev Connect Tissue Res 6:1–61

    Google Scholar 

  • Coimbra P, Ferreira P, de Sousa HC, Batista P, Rodrigues MA, Correia IJ, Gil MH (2011) Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int J Biol Macromol 48:112–118

    Google Scholar 

  • Costas L, Pera LM, Gómez López A, Mechetti M, Castro GR (2012) Controlled release of sulfasalazine release from smart pectin gel microspheres under physiological simulated fluids. Appl Biochem Biotechnol 167:1396–1407

    Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: A review. Biores Technol 97:1061–1085

    Google Scholar 

  • Dai Z-W, Zou X-H, Chen G-Q (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083. https://doi.org/10.1016/j.biomaterials.2009.02.015

  • Dale SK, Bruce E (2005) Life cycle assessment study of biopolymers (polyhydroxyalkanoates) derived from no-tilled corn. Int J Life Cycle Assess 10:200–210

    Google Scholar 

  • Dash R, Ragauskas AJ, Banker GS et al (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2:3403–3409

    Google Scholar 

  • Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23:147–161

    Google Scholar 

  • Dhillon GS, Oberoi HS, Kaur S, Bansal S, Brar SK (2011a) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid state tray fermentation employing mixed-culture of fungi. Ind Crop Prod 34:1160–1167

    Google Scholar 

  • Dhillon GS, Brar SK, Varma M, Tyagi RD (2011b) Apple pomace ultrafiltration sludge, a novel substrate for fungal bioproduction of citric acid: optimization studies. Food Chem 128:864–871

    Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Sabrine M, M’hamdi N (2012a) Lactoserum as a moistening medium and crude inducer for fungal cellulases and hemicellulose induction through solid-state fermentation of apple pomace. Biomass Bioenerg 41:165–174

    Google Scholar 

  • Dhillon GS, Kaur S, Sarma SJ, Brar SK, Surampalli RY (2012b) Recent development in applications of important biopolymer chitosan in biomedicine, pharmaceuticals and personal care products. Curr Tissue Eng 2:20–40

    Article  Google Scholar 

  • Dhillon GS, Kaur S, Kaur Brar S (2013) Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew Sust Energ Rev 27:789–805

    Article  Google Scholar 

  • Dimantov A, Kesselman E, Shimoni E (2004) Surface characterization and dissolution properties of high amylose corn starch–pectin coatings. Food Hydrocoll 18:29–37

    Article  CAS  Google Scholar 

  • Dini C, Islan GA, Castro GR (2014) Stability analysis of natural biopolymeric matrices for phage microencapsulation. Appl Biochem Biotechnol 174:2031–2047

    Article  CAS  Google Scholar 

  • Dong Z, Liu D, Keesing JK (2010) Jellyfish blooms in China: Dominant species, causes and consequences. Mar Pollut Bull 60:954–963

    Article  CAS  Google Scholar 

  • Dutta RK, Sahu S (2012) Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results. Pharma Sci 2:38–45

    Article  Google Scholar 

  • Duttagupta DS, Jadhav VM, Kadam VJ (2015) Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv 12:369–381

    Article  CAS  Google Scholar 

  • EC Packaging 2004: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32004L0012. Last access June 13, 2017

  • Edgar KJ (2006) Cellulose esters in drug delivery. Cellulose 14:49–64

    Article  Google Scholar 

  • Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411–427

    Google Scholar 

  • Elnashar MMM, Kahil T (2014) Biopolymeric formulations for biocatalysis and biomedical applications. Biomed Res Int 2014:1–10

    Google Scholar 

  • Fadel Picheth G, Luiz Pirich C, Rita Sierakowski M et al (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    Google Scholar 

  • FAOSTAT (2013) Production. Food and Agriculture Organization of the United Nations (FAOSTAT) and United State Department of Agriculture (USDA) in the “Foreign Agricultural Service http://faostat.fao.org

  • Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Google Scholar 

  • Fidalgo A, Ciriminna R, Carnaroglio D, Tamburino A, Cravotto G, Grillo G, Ilharco LM, Pagliaro M (2016) Eco-friendly extraction of pectin and essential oils from orange and lemon peels. ACS Sustain Chem Eng 4:2243–2251

    Google Scholar 

  • Fischer G, Schrattenholzer L (2001) Global bioenergy potentials through 2050. Biomass Bioenergy 20:151–159

    Google Scholar 

  • Fisher A, Watling M, Smith A, Knight A (2010) Pharmacokinetics and relative bioavailability of fentanyl pectin nasal spray 100-800 µg in healthy volunteers. Int J Clin Pharmacol Ther 48:860–867

    Google Scholar 

  • Fishman M, Coffin D, Konstance R, Onwulata C (2000) Extrusion of pectin/starch blends plasticized with glycerol. Carbohydr Polym 41:317–325

    Google Scholar 

  • Fissore EN, Basanta M, Nieto Calvache JE (2014) Chemical composition and rheological behaviour of pectins from unconventional sources. In: Hauppauge (ed) Pectin: Chemical Properties, Uses and health benefits. Nova Science Publishers Inc., NY, pp 187–202

    Google Scholar 

  • Food and Agriculture Organization (2011) http://faostat.fao.org. last access June 12, 2017

  • Food and Agriculture Organization (2017) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Last access Nov 8, 2017

  • Franca EF, Freitas LCG, Lins RD (2011) Chitosan molecular structure as a function of N-acetylation. Biopolymers 95:448–460

    Article  CAS  Google Scholar 

  • Fringant C, Desbrieres J, Rinaudo M (1996) Physical properties of acetylated starch-based materials: Relation with their molecular characteristics. Polymer (Guildf) 37:2663–2673

    Article  CAS  Google Scholar 

  • Gagneten AM, Paggi JC (2009) Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Wat Air Soil Pollut 198:317–334

    Article  CAS  Google Scholar 

  • Gautam S, Sharon A, Sagar P (2010) Grafted polysaccharides: Smart materials of the future, their synthesis and applications. In: Kalia S, Avérous L (eds) Biopolymers: Biomedical and environmental applications. Wiley, Hoboken, NJ, pp 35–57

    Google Scholar 

  • Gentil EC, Damgaard A, Hauschild M, Finnveden G, Eriksson O, Thorneloe S, Ozge Kaplan P, Barlaz M, Muller O, Matsui Y, Li R, Christensen TH (2010) Models for waste life cycle assessment: Review of technical assumptions. Waste Manage 12:2636–2648

    Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Google Scholar 

  • Giunchedi P, Conte U, Chetoni P, Saettone M (1999) Pectin microspheres as ophthalmic carriers for piroxicam: evaluation in vitro and in vivo in albino rabbits. Eur J Pharm Sci 9:1–7

    Google Scholar 

  • Glinsky VV, Raz A (2009) Modified citrus pectin anti-metastatic properties: one bullet, multiple targets. Pectin Struct Funct 344:1788–1791

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: The challenge of feeding 9 billion people. Science 327:812–818

    Google Scholar 

  • Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll 25:1813–1827

    Google Scholar 

  • Grande CJ, Torres FG, Gomez CM et al (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng, C 29:1098–1104

    Article  CAS  Google Scholar 

  • Grumezescu AM (2016) Nanobiomaterials in soft tissue engineering: applications of nanobiomaterials. Elsevier, Amsterdam, p 528

    Google Scholar 

  • Guo M, Stuckey DC, Murphy RJ (2013) End-of-life of starch-polyvinyl alcohol biopolymers. Biores Technol 127:256–266

    Article  CAS  Google Scholar 

  • Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Article  CAS  Google Scholar 

  • Hirano S, Tsuchida H, Nagao N (1989) N-acetylation in chitosan and the rate of its enzymatic hydrolysis. Biomaterials 10:574–576

    Article  CAS  Google Scholar 

  • Hongzhang C, Hongqiang L, Liying L (2011) The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenerg 35:1940–1945

    Article  Google Scholar 

  • Hoover R (2010) The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit Rev Food Sci Nutr 50:835–847

    Article  CAS  Google Scholar 

  • Hoyer B, Bernhardt A, Heinemann S et al (2012) Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromol 13:1059–1066

    Article  CAS  Google Scholar 

  • Hsein-Chih HW, Sarko A (1978) The double-helical molecular structure of crystalline b-amylose. Carbohydr Res 61:7–25

    Google Scholar 

  • Hui YH (2006) Handbook of food science, technology, and engineering (Taylor & Francis)

    Google Scholar 

  • INTA (2015) National Institute of Agricultural Technology (INTA). Pesticides added to the soil and their destiny in the environment 1st ed. Balcarce, Buenos Aires, p 73

    Google Scholar 

  • Ishigaki T, Kawagoshi Y, Ike M, Fujita M (1999) Biodegradation of a polyvinyl alcohol-starch blend plastic film. World J Microbiol Biotechnol 15:321–327

    Google Scholar 

  • Islam MA, Park T-E, Reesor E et al (2015) Mucoadhesive chitosan derivatives as novel drug carriers. Curr Pharm Des 21:4285–4309

    Google Scholar 

  • Islan GA, Dini C, Bartel LC, Bolzán AD, Castro GR (2015) Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms. Int J Pharm 496:953–964

    Google Scholar 

  • Janes KA, Alonso MJ (2003) Depolymerized chitosan nanoparticles for protein delivery: Preparation and characterization. J Appl Polym Sci 88:2769–2776

    Google Scholar 

  • Jayasekara R, Harding I, Bowater I et al (2004) Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym Test 23:17–27

    Google Scholar 

  • Jia H, Jia Y, Wang J, et al (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: 2009 2nd Int Conf Biomed Eng Infor IEEE, pp 1–5

    Google Scholar 

  • Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21

    Google Scholar 

  • Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072

    Google Scholar 

  • Kalapathy U, Proctor A (2001) Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chem 73:393–396

    Google Scholar 

  • Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176

    Google Scholar 

  • Kenawy E-R, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380

    Google Scholar 

  • Kittiphattanabawon P, Nalinanon S, Benjakul S, Kishimura H (2015) Characteristics of pepsin-solubilised collagen from the skin of splendid squid (Loligo formosana). J Chem 2015: Article ID 482354, 8 pages

    Google Scholar 

  • Klingbeil M (2000) Working document of biodegradable waste management. European Commission, Brussels

    Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos K, Papanikolaou S, Kwanb TH, Ki Lin CS (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627

    Google Scholar 

  • Krishnan S, Sekar S, Katheem MF et al (2012) Fish scale collagen-a novel material for corneal tissue engineering. Artif Organs 36:829–835

    Google Scholar 

  • Kumari A, Kaith BS, Singha AS, Kalia S (2010) Polysaccharide graft copolymers—synthesis, properties and applications. In: Kalia S, Avérous L (eds) Biopolymers: Biomedical and Environmental Applications. Wiley, Hoboken, NJ, pp 35–57

    Google Scholar 

  • Kunal P, Banthia AK, Majumdar DK (2006) Starch based hydrogel with potential biomedical application as artificial skin. Afr J Biomed Res 9:23–29

    Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956 https://doi.org/10.1097/ss.0b013e31815cc498

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90:735–764

    Google Scholar 

  • Lazovic G, Colic M, Grubor M, Jovanovic M (2005) The application of collagen sheet in open wound healing. Ann Burns Fire Disasters 18:151–156

    Google Scholar 

  • Lebo Jr. SE, Gargulak JD, McNally TJ (2001) Lignin. In: Kirk-Othmer (ed) Encyclopedia of Chemical Technology. Wiley, Malden, MA. vol 15, 1–32

    Google Scholar 

  • Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155

    Google Scholar 

  • Lemoigne M (1926) Produits de dehydration et de polymerisation de l’acide ß-oxobutyrique. Bull Soc Chim Biol 8:82

    Google Scholar 

  • Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24:3333–3343

    Google Scholar 

  • Liu D, Nikoo M, Boran G et al (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557

    Google Scholar 

  • Löckes J (1998) Properties and applications of compostable starch-based plastic materials. Polym Degrad Stab 59:245–249

    Google Scholar 

  • Mahboob S (2014) Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala. J Food Sci Technol 52:4296–4305

    Google Scholar 

  • Martins A, Facchi S, Follmann H et al (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15:20800–20832

    Google Scholar 

  • May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99

    Google Scholar 

  • McKinnon BT, Avis KE (1993) Membrane filtration of pharmaceutical solutions. Am J Hosp Pharm 50:1921–1936

    Google Scholar 

  • McNamara JT, Morgan JLW, Zimmer J (2015) A molecular description of cellulose biosynthesis. Annu Rev Biochem 84:895–921

    Google Scholar 

  • Medovent RM (2016) Chitosan based suture focusing on the real advantages of an outstanding. Adv Chitin Sci 14:211–216

    Google Scholar 

  • Menéndez JE, Hilbert JA (2013) Cuantificación y uso de Biomasa de residuos de cultivos en Argentina para bioenergía. In: Hilbert JA (ed). INTA. Buenos Aires p 48

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) http://www.millenniumassessment.org/es/ last access: June 12, 2017

  • Miller A (1984) Collagen: the organic matrix of bone. Philos Trans R Soc Lond B Biol Sci 304:455–477

    Google Scholar 

  • Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316

    Google Scholar 

  • Montico S (2010) Valoración económica de la utilización de los residuos de cosecha como fuente bioenergética en el sur de Santa Fe, Argentina. Jornada de Biocombustibles. Aportes para el análisis de la sustentabilidad de los biocombustibles

    Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Google Scholar 

  • Moreno J, Moral R, García Morales JL, Pascual JA, Bernal MB (2014) De residuo a recurso, el camino de la sostenibilidad. Red española de compostaje. Ed. Mundi Prensa

    Google Scholar 

  • Morganti P, Cinelli P, Lazzer A (2016) La bioplastica dagli scarti di lavorazione dell’olio di oliva. Ultim Front Nat 67–71

    Google Scholar 

  • Morimura S, Nagata H, Uemura Y et al (2002) Development of an effective process for utilization of collagen from livestock and fish waste. Process Biochem 37:1403–1412

    Google Scholar 

  • Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689

    Google Scholar 

  • Muzzarelli RAA (1997) Chitin. Pergamom, Oxford

    Google Scholar 

  • Naito H, Yoshimura M, Mizuno T et al (2013) The advantages of three-dimensional culture in a collagen hydrogel for stem cell differentiation. J Biomed Mater Res, Part A 101:2838–2845

    Google Scholar 

  • Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag 34:2634–2640. https://doi.org/10.1016/j.wasman.2014.09.007

  • Nayak P, Swain S (2002) Plastics and pollution: biodegradable polymers. Pop Plast Pkgg 47:66–78

    Google Scholar 

  • Nepote V, Grosso NR, Guzman CA (2002) Extraction of antioxidant components from peanut skins. Grasas Aceites 53:391–395

    Google Scholar 

  • Nesic AR, Trifunovic SS, Grujic AS, Velickovic SJ, Antonovic DG (2011) Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr Res 346:2463–2468

    Google Scholar 

  • Nilani P, Raveesha P, Kasthuribai NRN, Duraisamy B et al (2010) Formulation and evaluation of polysaccharide based biopolymer: An ecofriendly alternative for synthetic polymer. J Pharm Sci Res 2:178–184

    Google Scholar 

  • Niranjan Raj S, Lavanya SN, Sudisha J, Shekar Shetty H (2010) Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection. In: Kalia S, Avérous L (eds) Biopolymers: Biomedical and Environmental Applications. Wiley, Hoboken, NJ, pp 461–481

    Google Scholar 

  • No HK, Meyers SP (2000) Application of chitosan for treatment of waste waters. Rev Environ Contam Toxicol 163:1–28

    Google Scholar 

  • Nobes GAR, Maysinger D, Marchessault RH (1998) Polyhydroxyalkanoates: materials for delivery systems. Drug Deliv 5:167–177. https://doi.org/10.3109/10717549809052032

  • Olano-Martin E, Rimbach GH, Gibson GR, Rastall RA (2003) Pectin and pectic-oligosaccharides induce apoptosis in vitro human colonic adenocarcinoma cells. Anticancer Res 23:341–346

    Google Scholar 

  • Oliveira FC, Freire DMG, Castilho LR (2004) Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26:1851–1855. https://doi.org/10.1007/s10529-004-5315-0

  • Organisation Internationale de la Vigne et du Vin (OIV) (2007) World Vitivinicultural Statistics 2007, Structure of the World Vitinicultural Industry in 2007

    Google Scholar 

  • Orts WJ, Nobes GAR, Kawada J, et al (2008) Poly(hydroxyalkanoates): biorefinery polymers with awhole range of applications. The work of Robert H. Marchessault. Can J Chem 86:626–640

    Google Scholar 

  • Pagliaro M, Ciriminna R, Abrantes Fidalgo AM, Ilharco LM (2016) Pectin production and global market. Agro Food Ind Hi Tech 27

    Google Scholar 

  • Pamfil D, Nistor MT, Vasile C (2015) Collagen-Based Materials for Pharmaceutical Applications. Handbook of Polymers for Pharmaceutical Technologies. Wiley, Hoboken, NJ, USA, pp 439–481

    Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Phil Trans R Soc B 365:3065–3081

    Google Scholar 

  • Paschalis EP, Verdelis K, Doty SB et al (2001) Spectroscopic Characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Google Scholar 

  • Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426

    Google Scholar 

  • Pei L, Schmidt M, Wei W (2011) Conversion of biomass into bioplastics and their potential environmental impacts. In: Elnashar M (ed) Biotechnology of Biopolymers. InTech, pp 57–74

    Google Scholar 

  • Peniston QP, Johnson E (1980) US patent 4,195–175

    Google Scholar 

  • Peters V, Rehm BHA (2005) In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiol Lett 248:93–100. https://doi.org/10.1016/j.femsle.2005.05.027

  • Petersen K, Nielsen PV, Olsen MB (2001) Physical and mechanical properties of bio-based materials-starch polylactate and polyhydroxybutyrate. Starch 53:356–361

    Google Scholar 

  • Piemonte V (2011) Bioplastic wastes: the best final disposition for energy saving. J Polym Environ 19:988–994

    Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Google Scholar 

  • Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds a Compend. Clin Res Pract 21:1–3

    Google Scholar 

  • Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433

    Google Scholar 

  • Primo A, Atienzar P, Sanchez E, Delgado JM, García H (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48:9254–9256

    Google Scholar 

  • Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511

    Google Scholar 

  • Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA (2009) Collagens as biomaterials. J Mater Sci Mater Med 20:3–8

    Google Scholar 

  • Rana M, Kumari A, Chauhan GS, Chauhan K (2014) Modified chitosan microspheres in non-aggregated amylase immobilization. Int J Biol Macromol 66:46–51

    Google Scholar 

  • Rangel-Rodríguez AM, Conxita S, Susana V et al (2014) Immobilization of pectinesterase in genipin-crosslinked chitosan membrane for low methoxyl pectin production. Appl Biochem Biotechnol 174:2941–2950

    Google Scholar 

  • Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Bio

    Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Google Scholar 

  • Rolin C (1993) Pectin. In: Whistler RL (ed) Industrial gums polysaccharides and their derivatives. Whistler Center for Carbohydrate Research Purdue University West Lafayette. Academic Press, Indiana, pp 258–288

    Google Scholar 

  • Rouilly A, Rigal L (2002) Agro-materials: A bibliographic review, Polymer Reviews. J Macromol Sci Part C—Polymer Rev C42:441–479

    Google Scholar 

  • Rudnik E (2008) Compostable polymer materials. Elsevier

    Google Scholar 

  • Rusendi D, Sheppard JD (1995) Hydrolysis of potato processing waste for the production of Poly-fl-Hydroxybutyrate. Biores Technol 54:191–196

    Google Scholar 

  • Ryu S, Karim MN (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol 91:529–542

    Google Scholar 

  • Sahoo D, Nayak PL (2011) Chitosan: The most valuable derivative of chitin. In: Kalia S, Avérous L (eds) Biopolymers: Biomedical and Environmental Applications. Wiley, Hoboken, NJ, pp 129–166

    Google Scholar 

  • Sanchez-Vazquez SA, Hailes HC, Evans JRG (2013) Hydrophobic polymers from food waste: Resources and synthesis. Polymer Rev 53:627–694

    Google Scholar 

  • Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908

    Google Scholar 

  • Schmidt MM, Dornelles RCP, Mello RO et al (2016) Collagen extraction process. Int Food Res J 23:913–922

    Google Scholar 

  • Shalini R, Gupta DK (2010) Utilization of pomace from apple processing industries: a review. J Food Sci Technol 47:365–371

    Google Scholar 

  • Sheehan J, Aden A, Paustian K, Killian K, Brenner J, Walsh M, and Nelson R (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J Ind Ecol 7(3–4). Massachusetts Institute of Technology and Yale University

    Google Scholar 

  • Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics

    Google Scholar 

  • Sherman VR, Yang W, Meyers MA (2015) The materials science of collagen. J Mech Behav Biomed Mater 52:22–50

    Google Scholar 

  • Shogren R (2009) Starch-Poly(hydroxyalkanoate) composites and blends. In: Yu L (ed) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken, NJ, USA, pp 209–226

    Google Scholar 

  • Shokri J, Adibki K (2013) Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In: Cellulose—Medical, Pharmaceutical and Electronic Applications. InTech,

    Google Scholar 

  • Silva TH, Moreira-Silva J, Marques ALP et al (2014) Marine origin collagens and its potential applications. Mar Drugs 12:5881–5901

    Google Scholar 

  • Silva D, Pinto LFV, Bozukova D et al (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloid Surface B 147:81–89

    Google Scholar 

  • Silvipriya KS, Krishna Kumar K, Bhat AR et al (2015) Collagen: Animal sources and biomedical application. J Appl Pharm Sci 5:123–127

    Google Scholar 

  • Singh B, Guldhe A, Rawat I, Bux F (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew Sust Energ Rev 29:216–245

    Google Scholar 

  • Song JH, Jeon CO, Choi MH, et al (2007) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415

    Google Scholar 

  • Sriamornsak P, Thirawong N, Weerapol Y, Nunthanid J, Sungthongjeen S (2007) Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur J Pharm Biopharm 67:211–219

    Google Scholar 

  • Srivastava P, Malviya R (2011) Sources of pectin, extraction and its applications in pharmaceutical industry—An overview. Indian J Nat Prod Resour 2:10–18

    Google Scholar 

  • Stephen AM (1995) Food polysaccharides and their applications. Marcel Dekker, Inc

    Google Scholar 

  • Subhan F, Ikram M, Shehzad A, Ghafoor A (2015) Marine Collagen: An Emerging Player in Biomedical applications. J Food Sci Technol 52:4703–4707

    Google Scholar 

  • Thibault J-F, Ralet M-C (2003) Physico-chemical properties of pectins in the cell walls and after extraction. In: Advances in pectin and pectinase research. Springer Netherlands, Dordrecht, pp 91–105

    Google Scholar 

  • Thirunavukkarasu N, Dhinamala K, Inbaraj RM (2011) Production of chitin from two marine Stomatopods Oratosquilla spp. (Crustacea). J Chem Pharm Res 3:353–359

    Google Scholar 

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009), Plastics, the environment and human health: current consensus and future trends. Phil Trans R Soc B 364:2153–2166

    Google Scholar 

  • Trabelsi I, Ayadi D, Bejar W et al (2014) Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. Int J Biol Macromol 64:84–89

    Google Scholar 

  • Trevors JT, Saier MH Jr (2010) Three Laws of Biology. Wat Air Soil Pollut 205(Suppl 1):S87–S89

    Google Scholar 

  • Trevors JT, Saier Jr MH (2010a) Manage Humans, not the Environment. Wat Air Soil Pollut (2010a) 205(Suppl 1):S93–S95

    Google Scholar 

  • United Nations. Management of waste from animal product processing. http://www.fao.org/ WAIRDOCS/LEAD/X6114E/x6114e00.htm#Contents

  • United States Department of Agriculture (2012) Office of Global Analysis. Livestock and Poultry: World Markets and Trade. Foreign Agricultural Service, pp 1–25

    Google Scholar 

  • Upadhyaya L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 91:452–466

    Google Scholar 

  • Usman A, Zia KM, Zuber M et al (2016) Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645

    Google Scholar 

  • van Heerden I, Cronjé C, Swart SH, Kotzé JM (2002) Microbial, chemical and physical aspects of citrus waste composting. Bioresour Technol 81:71–76

    Google Scholar 

  • Verheijen LAHM, Wiersema D, Pol LWH (2013) Food and Agriculture Organization

    Google Scholar 

  • Volova T, Shishatskaya E, Sevastianov V, et al (2003) Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J 16:125–133. https://doi.org/10.1016/S1369-703X(03)00038-X

  • von Bomhard A, Veit J, Bermueller C et al (2013) Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle? a model tested in rabbits. PLoS ONE 8:e71667

    Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    Google Scholar 

  • Wan YZ, Luo H, He F et al (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217

    Google Scholar 

  • Wang Y, Bian Y-Z, Wu Q, Chen G-Q (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. https://doi.org/10.1016/j.biomaterials.2008.03.021

  • Wang Z, Wang L, Lin S et al (2014) Isolation and characterization of collagen from the muscle of Amur sturgeon (Acipenser schrenckii). Biotechnol Bioprocess Eng 19:935–941

    Google Scholar 

  • Wang S, Li C, Copeland L et al (2015) Starch Retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14:568–585

    Google Scholar 

  • Wu LQ, Embree HD, Balgley BM, Smith PJ, Payne GF (2002) Utilizing renewable resources to create functional polymers: chitosan-based associative thickener. Environ Sci Technol 36:3446–3454

    Google Scholar 

  • Yan S, Tyagi RD, Surampalli RY (2006) Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci Technol 53:175–180

    Google Scholar 

  • Yamada S, Yamamoto K, Ikeda T, et al (2014) Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int. 2014: Article ID 302932, 8 p

    Google Scholar 

  • Yang H, Shu Z (2014) The extraction of collagen protein from pigskin. J Chem Pharm Res 6:683–687

    Google Scholar 

  • Yao Y-C, Zhan X-Y, Zhang J, et al (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830. https://doi.org/10.1016/j.biomaterials.2008.09.008

  • Yordanov G, Evangelatov A, Skrobanska R (2013) Epirubicin loaded to pre-polymerized poly(butyl cyanoacrylate) nanoparticles: preparation and in vitro evaluation in human lung adenocarcinoma cells. Colloid Surface B 107:115–123

    Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611–618

    Google Scholar 

  • Zhao K, Deng Y, Chun Chen J, Chen G-Q (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045. https://doi.org/10.1016/S0142-9612(02)00426-X

  • Zheng F, Lin Y, Verbeken E et al (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol 191:1961–1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo R. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayón, B., Berti, I.R., Gagneten, A.M., Castro, G.R. (2018). Biopolymers from Wastes to High-Value Products in Biomedicine. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_1

Download citation

Publish with us

Policies and ethics