Skip to main content

KSHV Genome Replication and Maintenance in Latency

  • Chapter
  • First Online:
Human Herpesviruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1045))

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus-8 (HHV-8), is the eighth human herpesvirus found by Yuan Chang and Patrick Moore, 1992. It is a Rhadinovirus belonging to the gamma herpesvirus subfamily. As known for many gamma herpesviruses, KSHV is also well-correlated to several cancer formations such as Kaposi’s sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman’s disease. Different from the other herpesvirus subfamily, gamma herpesviruses establish latency as a default infection strategy when they infect to the target cells, as KSHV is present as the latent form in the related cancers. In the latency, the virus expresses a limited number of the genes such as latency-associated nuclear antigen (LANA), v-cyclin (v-CYC, ORF72), v-FLIP (K13), kaposin (K12), and 25 microRNAs (K-miRNAs). The virus replicates according to cellular replication machinery with a viral replication origin (ori-P) and LANA. Then, the replicated genome is segregated equally to daughter cells by appearance to maintain the virus genome copy number per cell. The virus makes the most use of cellular machinery to achieve this end. In this chapter, I would like to review KSHV replication and gene expression in the latency and discuss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR, Lennette ET, Levy JA (1995) Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science 268(5210):582–583

    Article  CAS  PubMed  Google Scholar 

  • Andreoni M, Sarmati L, Nicastri E, El Sawaf G, El Zalabani M, Uccella I, Bugarini R, Parisi SG, Rezza G (2002) Primary human herpesvirus 8 infection in immunocompetent children. JAMA 287(10):1295–1300

    Article  PubMed  Google Scholar 

  • Ballestas ME, Kaye KM (2001) Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75(7):3250–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballestas ME, Kaye KM (2011) The latency-associated nuclear antigen, a multifunctional protein central to Kaposi’s sarcoma-associated herpesvirus latency. Future Microbiol 6(12):1399–1413. https://doi.org/10.2217/fmb.11.137

    Article  PubMed  CAS  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414):641–644

    Article  CAS  PubMed  Google Scholar 

  • Ballon G, Chen K, Perez R, Tam W, Cesarman E (2011) Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest 121(3):1141–1153. https://doi.org/10.1172/JCI44417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boshoff C, Chang Y (2001) Kaposi’s sarcoma-associated herpesvirus: a new DNA tumor virus. Annu Rev Med 52:453–470

    Article  CAS  PubMed  Google Scholar 

  • Boshoff C, Weiss RA (1998) Kaposi’s sarcoma-associated herpesvirus. Adv Cancer Res 75:57–86

    Article  CAS  PubMed  Google Scholar 

  • Boshoff C, Weiss RA (2001) Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci 356(1408):517–534

    Article  CAS  Google Scholar 

  • Boss IW, Plaisance KB, Renne R (2009) Role of virus-encoded microRNAs in herpesvirus biology. Trends Microbiol 17(12):544–553. https://doi.org/10.1016/j.tim.2009.09.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77(15):8532–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burysek L, Pitha PM (2001) Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J Virol 75(5):2345–2352

    Article  CAS  PubMed  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332(18):1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266(5192):1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Cieniewicz B, Santana AL, Minkah N, Krug LT (2016) Interplay of murine Gammaherpesvirus 68 with NF-kappaB signaling of the host. Front Microbiol 7:1202. https://doi.org/10.3389/fmicb.2016.01202

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotter MA 2nd, Robertson ES (1999) The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264(2):254–264

    Article  CAS  PubMed  Google Scholar 

  • Damania BA, Cesarman E (2013) In: Knipe DMHPM (ed) Kaposi’s sarcoma-associated herpesvirus, Fields virology, vol 2, 6th edn. Lippincott Willamas and Wilkins, Philadelphia, pp 2080–2128

    Google Scholar 

  • Di Bartolo DL, Cannon M, Liu YF, Renne R, Chadburn A, Boshoff C, Cesarman E (2008) KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF-beta type II receptor. Blood 111(9):4731–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4(6):983–993

    Article  CAS  PubMed  Google Scholar 

  • Direkze S, Laman H (2004) Regulation of growth signalling and cell cycle by Kaposi’s sarcoma-associated herpesvirus genes. Int J Exp Pathol 85(6):305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D (1998) A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus. J Virol 72(10):8309–8315

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM (2003) Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67(2):175–212. table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duus KM, Lentchitsky V, Wagenaar T, Grose C, Webster-Cyriaque J (2004) Wild-type Kaposi’s sarcoma-associated herpesvirus isolated from the oropharynx of immune-competent individuals has tropism for cultured oral epithelial cells. J Virol 78(8):4074–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman ER, Kara M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA (2014) Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. MBio 5(3):e00981–e00914. https://doi.org/10.1128/mBio.00981-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujimuro M, Wu FY, ApRhys C, Kajumbula H, Young DB, Hayward GS, Hayward SD (2003) A novel viral mechanism for dysregulation of beta-catenin in Kaposi’s sarcoma-associated herpesvirus latency. Nat Med 9(3):300–306

    Article  CAS  PubMed  Google Scholar 

  • Gao SJ, Zhang YJ, Deng JH, Rabkin CS, Flore O, Jenson HB (1999) Molecular polymorphism of Kaposi’s sarcoma-associated herpesvirus (Human herpesvirus 8) latent nuclear antigen: evidence for a large repertoire of viral genotypes and dual infection with different viral genotypes. J Infect Dis 180(5):1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Gottwein E (2012) Kaposi’s sarcoma-associated herpesvirus microRNAs. Front Microbiol 3:165. https://doi.org/10.3389/fmicb.2012.00165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grundhoff A, Ganem D (2001) Mechanisms governing expression of the v-FLIP gene of Kaposi’s sarcoma-associated herpesvirus. J Virol 75(4):1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundhoff A, Ganem D (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113(1):124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge UR, Ruzicka T, Tyring SK, Stuschke M, Roggendorf M, Schwartz RA, Seeber S (2002) Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis 2(5):281–292

    Article  PubMed  Google Scholar 

  • Hu J, Renne R (2005) Characterization of the minimal replicator of Kaposi’s sarcoma-associated herpesvirus latent origin. J Virol 79(4):2637–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Garber AC, Renne R (2002) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 76(22):11677–11687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2):891–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karass M, Grossniklaus E, Seoud T, Jain S, Goldstein DA (2017) Kaposi sarcoma inflammatory cytokine syndrome (KICS): a rare but potentially treatable condition. Oncologist 22(5):623–625. https://doi.org/10.1634/theoncologist.2016-0237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klochkov DB, Gavrilov AA, Vassetzky YS, Razin SV (2009) Early replication timing of the chicken alpha-globin gene domain correlates with its open chromatin state in cells of different lineages. Genomics 93(5):481–486. https://doi.org/10.1016/j.ygeno.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  • Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ, Kristie TM (2013) Snapshots: chromatin control of viral infection. Virology 435(1):141–156. https://doi.org/10.1016/j.virol.2012.09.023

    Article  PubMed  CAS  Google Scholar 

  • Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM (2007) Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 3(9):1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78(7):3601–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78(12):6585–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC, Gao SJ, Liang C, Jung JU (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11(11):1355–1362. https://doi.org/10.1038/ncb1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei X, Bai Z, Ye F, Huang Y, Gao SJ (2010a) Regulation of herpesvirus lifecycle by viral microRNAs. Virulence 1(5):433–435. https://doi.org/10.4161/viru.1.5.12966

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei X, Bai Z, Ye F, Xie J, Kim CG, Huang Y, Gao SJ (2010b) Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol 12(2):193–199. https://doi.org/10.1038/ncb2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leidal AM, Cyr DP, Hill RJ, Lee PW, McCormick C (2012) Subversion of autophagy by Kaposi’s sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe 11(2):167–180. https://doi.org/10.1016/j.chom.2012.01.005

    Article  PubMed  CAS  Google Scholar 

  • Li M, Lee H, Yoon DW, Albrecht JC, Fleckenstein B, Neipel F, Jung JU (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71(3):1984–1991

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liang C (2012) Viral FLIPping autophagy for longevity. Cell Host Microbe 11(2):101–103. https://doi.org/10.1016/j.chom.2012.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longnecker RM, Kieff E, Cohen JI (2013) In: Knipe DMHPM (ed) Epstein-Barr virus, Fields Virology, vol 2, 6th edn. Lippincott Willamas and Wilkins, Philadelphia, pp 1898–1959

    Google Scholar 

  • Low W, Harries M, Ye H, Du MQ, Boshoff C, Collins M (2001) Internal ribosome entry site regulates translation of Kaposi’s sarcoma-associated herpesvirus FLICE inhibitory protein. J Virol 75(6):2938–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall V, Parks T, Bagni R, Wang CD, Samols MA, Hu J, Wyvil KM, Aleman K, Little RF, Yarchoan R, Renne R, Whitby D (2007) Conservation of virally encoded microRNAs in Kaposi sarcoma--associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease. J Infect Dis 195(5):645–659

    Article  CAS  PubMed  Google Scholar 

  • Martin JN, Ganem DE, Osmond DH, Page-Shafer KA, Macrae D, Kedes DH (1998) Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med 338(14):948–954

    Article  CAS  PubMed  Google Scholar 

  • Matta H, Mazzacurati L, Schamus S, Yang T, Sun Q, Chaudhary PM (2007a) Kaposi’s sarcoma-associated herpesvirus (KSHV) oncoprotein K13 bypasses TRAFs and directly interacts with the IkappaB kinase complex to selectively activate NF-kappaB without JNK activation. J Biol Chem 282(34):24858–24865

    Article  CAS  PubMed  Google Scholar 

  • Matta H, Mazzacurati L, Schamus S, Yang T, Sun Q, Chaudhary PM (2007b) KSHV oncoprotein K13 bypasses TRAFs and directly interacts with the Ikappa B kinase complex to selectively activate NF-kappa B without JNK activation. J Biol Chem 282:24858–24865

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307(5710):739–741

    Article  CAS  PubMed  Google Scholar 

  • McCormick C, Ganem D (2006) Phosphorylation and function of the kaposin B direct repeats of Kaposi’s sarcoma-associated herpesvirus. J Virol 80(12):6165–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsaki E, Ueda K (2012) Kaposi’s sarcoma-associated herpesvirus genome replication, partitioning, and maintenance in latency. Front Microbiol 3(7). https://doi.org/10.3389/fmicb.2012.00007

  • Ohsaki E, Suzuki T, Karayama M, Ueda K (2009) Accumulation of LANA at nuclear matrix fraction is important for Kaposi’s sarcoma-associated herpesvirus replication in latency. Virus Res 139(1):74–84. https://doi.org/10.1016/j.virusres.2008.10.011

    Article  PubMed  CAS  Google Scholar 

  • Pellett PERB (2013) In: Knipe DMHPM (ed) Herpesviridae, Fields virology, vol 2, 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1802–1822

    Google Scholar 

  • Plancoulaine S, Abel L, van Beveren M, Tregouet DA, Joubert M, Tortevoye P, de The G, Gessain A (2000) Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356(9235):1062–1065. https://doi.org/10.1016/S0140-6736(00)02729-X

    Article  PubMed  CAS  Google Scholar 

  • Rahayu R, Ohsaki E, Omori H, Ueda K (2016) Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes. Virology 496:51–58. https://doi.org/10.1016/j.virol.2016.05.020

    Article  PubMed  CAS  Google Scholar 

  • Renne R, Lagunoff M, Zhong W, Ganem D (1996) The size and conformation of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70(11):8151–8154

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73(7):5722–5730

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K (2004) Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol 78(14):7299–7310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarid R, Wiezorek JS, Moore PS, Chang Y (1999) Characterization and cell cycle regulation of the major Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 73(2):1438–1446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schwaiger M, Kohler H, Oakeley EJ, Stadler MB, Schubeler D (2010) Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res 20(6):771–780. https://doi.org/10.1101/gr.101790.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86(4):1276–1280

    PubMed  CAS  Google Scholar 

  • Stedman W, Deng Z, Lu F, Lieberman PM (2004) ORC, MCM, and histone hyperacetylation at the Kaposi’s sarcoma-associated herpesvirus latent replication origin. J Virol 78(22):12566–12575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3):2232–2242

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Q, Tsurimoto T, Juillard F, Li L, Li S, De Leon Vazquez E, Chen S, Kaye K (2014) Kaposi’s sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence. Proc Natl Acad Sci U S A 111(32):11816–11821. https://doi.org/10.1073/pnas.1404219111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386(6624):517–521

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Sakakibara S, Ohsaki E, Yada K (2006) Lack of a mechanism for faithful partition and maintenance of the KSHV genome. Virus Res 122(1–2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Veettil MV, Bandyopadhyay C, Dutta D, Chandran B (2014) Interaction of KSHV with host cell surface receptors and cell entry. Virus 6(10):4024–4046. https://doi.org/10.3390/v6104024

    Article  CAS  Google Scholar 

  • Verma SC, Robertson ES (2003) Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett 222(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Verma SC, Choudhuri T, Kaul R, Robertson ES (2006) Latency-associated nuclear antigen (LANA) of Kaposi’s sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J Virol 80(5):2243–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma SC, Lan K, Choudhuri T, Cotter MA, Robertson ES (2007) An autonomous replicating element within the KSHV genome. Cell Host Microbe 2(2):106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verschuren EW, Klefstrom J, Evan GI, Jones N (2002) The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2(3):229–241

    Article  CAS  PubMed  Google Scholar 

  • Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138(1):30–50. https://doi.org/10.1016/j.cell.2009.06.036

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Gan J, Wang C, Zhu C, Cai Q (2016) Cell cycle regulatory functions of the KSHV Oncoprotein LANA. Front Microbiol 7(334). https://doi.org/10.3389/fmicb.2016.00334

  • Xiao B, Verma SC, Cai Q, Kaul R, Lu J, Saha A, Robertson ES (2010) Bub1 and CENP-F can contribute to Kaposi’s sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J Virol 84(19):9718–9732. https://doi.org/10.1128/JVI.00713-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Zhu C, Guo Y, Wei F, Lu J, Qin J, Banerjee S, Wang J, Shang H, Verma SC, Yuan Z, Robertson ES, Cai Q (2014) Inhibition of KAP1 enhances hypoxia-induced Kaposi’s sarcoma-associated herpesvirus reactivation through RBP-Jkappa. J Virol 88(12):6873–6884. https://doi.org/10.1128/JVI.00283-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ueda, K. (2018). KSHV Genome Replication and Maintenance in Latency. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_14

Download citation

Publish with us

Policies and ethics