Skip to main content

Other Modern Methods for Studying Biomembranes

  • Chapter
  • First Online:
Membrane Biophysics
  • 1801 Accesses

Abstract

The cell membrane is a functional lipid–bilayer interface through which cells sense their chemical and physical environments for coordinated proper cellular responses. Due to the heterogeneous and dynamic nature, structural and functional characterization of the cell membrane events presents a great challenge. Thus, it is still not well understood that how cells structurally organize the lipid and protein molecules at the molecular scale in the cell membrane. It is even more intriguing how cells make good use of heterogeneity of local lipid/protein environments to efficiently engage chemical and physical stimuli. Gaining this knowledge is important for functional mapping the relevant signaling pathways, thus allowing more precise and rational intervention and management in disease control and drug developments. With the help of modern biophysical tools such as those described in the previous chapters, studying membrane events is becoming technologically feasible, even in live cells. This chapter will cover more modern biophysical methods together with their applications in membrane study and highlight the power of combinational use of different techniques to obtain more information on the biological events on the cell surface. Here, a particular emphasis is to use examples to illustrate how biological signaling events can be readily dissected with biophysical tools and how knowledge gained with these approaches can be integrated into our understanding of cellular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boland T, Ratner BD (1995) Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc Natl Acad Sci U S A 92(12):5297–5301

    Article  CAS  Google Scholar 

  2. Helenius J, Heisenberg CP, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121(11):1785–1791. doi:10.1242/jcs.030999

    Article  CAS  Google Scholar 

  3. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Article  CAS  Google Scholar 

  4. Thomas WE, Vogel V, Sokurenko E (2008) Biophysics of catch bonds. Annu Rev Biophys 37:399–416. doi:10.1146/annurev.biophys.37.032807.125804

    Article  CAS  Google Scholar 

  5. Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555. doi:10.1016/S0006-3495(97)78802-7

    Article  CAS  Google Scholar 

  6. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105(41):15755–15760. doi:10.1073/pnas.0806085105

    Article  CAS  Google Scholar 

  7. Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6):313–317. doi:10.1038/35014000

    Article  CAS  Google Scholar 

  8. Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA, Schoel WM, Li T, Lowell CA, Ling CC, Amrein MW, Shi Y (2008) Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29(5):807–818. doi:10.1016/j.immuni.2008.09.013

    Article  CAS  Google Scholar 

  9. Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P, Ward SM, Seamone ME, Vilaysane A, Mucsi AD, Fong Y, Prenner E, Ling CC, Tschopp J, Muruve DA, Amrein MW, Shi Y (2011) Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 17(4):479–487. doi:10.1038/nm.2306

    Article  CAS  Google Scholar 

  10. Chen J, Ganguly A, Mucsi AD, Meng J, Yan J, Detampel P, Munro F, Zhang Z, Wu M, Hari A, Stenner MD, Zheng W, Kubes P, Xia T, Amrein MW, Qi H, Shi Y (2017) Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy. J Exp Med 214(2):327–338. doi:10.1084/jem.20160620

    Article  CAS  Google Scholar 

  11. Yan J, Liu B, Shi Y, Qi H (2017) Class II MHC-independent suppressive adhesion of dendritic cells by regulatory T cells in vivo. J Exp Med 214(2):319–326. doi:10.1084/jem.20160629

    Article  CAS  Google Scholar 

  12. Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J, Bulbuc N, Samstag Y, Gunzer M, Spatz JP, Hammerling GJ (2009) Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci U S A 106(42):17852–17857. doi:10.1073/pnas.0905384106

    Article  CAS  Google Scholar 

  13. Hoffmann S, Hosseini BH, Hecker M, Louban I, Bulbuc N, Garbi N, Wabnitz GH, Samstag Y, Spatz JP, Hammerling GJ (2011) Single cell force spectroscopy of T cells recognizing a myelin-derived peptide on antigen presenting cells. Immunol Lett 136(1):13–20. doi:10.1016/j.imlet.2010.11.005

    Article  CAS  Google Scholar 

  14. Lim TS, Mortellaro A, Lim CT, Hammerling GJ, Ricciardi-Castagnoli P (2011) Mechanical interactions between dendritic cells and T cells correlate with T cell responsiveness. J Immunol 187(1):258–265. doi:10.4049/jimmunol.1100267

    Article  CAS  Google Scholar 

  15. Lim TS, Goh JK, Mortellaro A, Lim CT, Hammerling GJ, Ricciardi-Castagnoli P (2012) CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One 7(9):e45185. doi:10.1371/journal.pone.0045185

    Article  CAS  Google Scholar 

  16. Puech PH, Nevoltris D, Robert P, Limozin L, Boyer C, Bongrand P (2011) Force measurements of TCR/pMHC recognition at T cell surface. PLoS One 6(7):e22344. doi:10.1371/journal.pone.0022344

    Article  CAS  Google Scholar 

  17. Guo X, Yan C, Li H, Huang W, Shi X, Huang M, Wang Y, Pan W, Cai M, Li L, Wu W, Bai Y, Zhang C, Liu Z, Wang X, Zhang XF, Tang C, Wang H, Liu W, Ouyang B, Wong CC, Cao Y, Xu C (2017) Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res 27(4):505–525. doi:10.1038/cr.2017.42

    Article  CAS  Google Scholar 

  18. Liu B, Chen W, Evavold BD, Zhu C (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157(2):357–368. doi:10.1016/j.cell.2014.02.053

    Article  CAS  Google Scholar 

  19. Xu CQ, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T Cell receptor activation by dynamic membrane binding of the CD3 epsilon cytoplasmic tyrosine-based motif. Cell 135(4):702–713. doi:10.1016/j.cell.2008.09.044

    Article  CAS  Google Scholar 

  20. Litvinov RI, Shuman H, Bennett JS, Weisel JW (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci U S A 99(11):7426–7431. doi:10.1073/pnas.112194999

    Article  CAS  Google Scholar 

  21. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266. doi:10.1038/nature09198

    Article  CAS  Google Scholar 

  22. Stabley DR, Jurchenko C, Marshall SS, Salaita KS (2011) Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat Methods 9(1):64–67. doi:10.1038/nmeth.1747

    Article  Google Scholar 

  23. Wang X, Ha T (2013) Defining single molecular forces required to activate integrin and notch signaling. Science 340(6135):991–994. doi:10.1126/science.1231041

    Article  CAS  Google Scholar 

  24. Natkanski E, Lee W-Y, Mistry B, Casal A, Molloy JE, Tolar P (2013) B cells use mechanical energy to discriminate antigen affinities. Science 340(6140):1587–1590. doi:10.1126/science.1237572

    Article  CAS  Google Scholar 

  25. Wan Z, Chen X, Chen H, Ji Q, Chen Y, Wang J, Cao Y, Wang F, Lou J, Tang Z, Liu W (2015) The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. Elife 4. doi:10.7554/eLife.06925

  26. McLaughlin S, Smith SO, Hayman MJ, Murray D (2005) An electrostatic engine model for autoinhibition and activation of the epidermal growth factor receptor (EGFR/ErbB) family. J Gen Physiol 126(1):41–53. doi:10.1085/jgp.200509274

    Article  CAS  Google Scholar 

  27. Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313(5785):347–351. doi:10.1126/science.1129551

    Article  CAS  Google Scholar 

  28. Yeung T, Grinstein S (2007) Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev 219:17–36. doi:10.1111/j.1600-065X.2007.00546.x

    Article  CAS  Google Scholar 

  29. McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 20(7):272–276

    Article  CAS  Google Scholar 

  30. Shi X, Bi Y, Yang W, Guo X, Jiang Y, Wan C, Li L, Bai Y, Guo J, Wang Y, Chen X, Wu B, Sun H, Liu W, Wang J, Xu C (2013) Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493(7430):111–115. doi:http://www.nature.com/nature/journal/v493/n7430/abs/nature11699.html#supplementary-information

  31. Chen X, Pan W, Sui Y, Li H, Shi X, Guo X, Qi H, Xu C, Liu W (2015) Acidic phospholipids govern the enhanced activation of IgG-B cell receptor. Nat Commun 6:8552. doi:10.1038/ncomms9552

    Article  CAS  Google Scholar 

  32. Ma Y, Yamamoto Y, Nicovich PR, Goyette J, Rossy J, Gooding JJ, Gaus K (2017) A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat Biotechnol 35(4):363–370. doi:10.1038/nbt.3828

    Article  CAS  Google Scholar 

  33. Ellis-Davies GC, Barsotti RJ (2006) Tuning caged calcium: photolabile analogues of EGTA with improved optical and chelation properties. Cell Calcium 39(1):75–83. doi:10.1016/j.ceca.2005.10.003

    Article  CAS  Google Scholar 

  34. Nerbonne JM, Richard S, Nargeot J, Lester HA (1984) New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature 310(5972):74–76

    Article  CAS  Google Scholar 

  35. Huse M, Klein LO, Girvin AT, Faraj JM, Li QJ, Kuhns MS, Davis MM (2007) Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27(1):76–88. doi:10.1016/j.immuni.2007.05.017

    Article  CAS  Google Scholar 

  36. Wang J, Tang S, Wan Z, Gao Y, Cao Y, Yi J, Si Y, Zhang H, Liu L, Liu W (2016) Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation. Proc Natl Acad Sci U S A 113(5):E558–E567. doi:10.1073/pnas.1517612113

    Article  CAS  Google Scholar 

  37. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  Google Scholar 

  38. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  CAS  Google Scholar 

  39. Kornreich BG (2007) The patch clamp technique: principles and technical considerations. J Vet Cardiol 9(1):25–37. doi:10.1016/j.jvc.2007.02.001

    Article  Google Scholar 

  40. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60. doi:10.1126/science.1193270

    Article  CAS  Google Scholar 

  41. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181. doi:10.1038/nature10812

    Article  CAS  Google Scholar 

  42. Kusch J, Zifarelli G (2014) Patch-clamp fluorometry: electrophysiology meets fluorescence. Biophys J 106(6):1250–1257. doi:10.1016/j.bpj.2014.02.006

    Article  CAS  Google Scholar 

  43. Zheng J, Zagotta WN (2000) Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28(2):369–374

    Article  CAS  Google Scholar 

  44. Taraska JW, Zagotta WN (2007) Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat Struct Mol Biol 14(9):854–860. doi:10.1038/nsmb1281

    Article  CAS  Google Scholar 

  45. Miragoli M, Moshkov A, Novak P, Shevchuk A, Nikolaev VO, El-Hamamsy I, Potter CM, Wright P, Kadir SH, Lyon AR, Mitchell JA, Chester AH, Klenerman D, Lab MJ, Korchev YE, Harding SE, Gorelik J (2011) Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells. J R Soc Interface 8(60):913–925. doi:10.1098/rsif.2010.0597

    Article  CAS  Google Scholar 

  46. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657. doi:10.1126/science.1185988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shaun Davis, University of Calgary, for producing Fig. 13.1 and Ms. Libing Mu, Tsinghua University, for producing Figs. 13.5 and 13.7–13.9.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Amrein or Yan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amrein, M., Xia, T., Shi, Y. (2018). Other Modern Methods for Studying Biomembranes. In: Wang, H., Li, G. (eds) Membrane Biophysics. Springer, Singapore. https://doi.org/10.1007/978-981-10-6823-2_13

Download citation

Publish with us

Policies and ethics