Skip to main content

Transcription Factors and Colorectal Cancer: An Overview

  • Chapter
  • First Online:
Book cover Role of Transcription Factors in Gastrointestinal Malignancies

Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide among various cancer malignancies. The drugs and targeted therapies that target various intracellular signaling pathways have improved the progression free survival of CRC patients, but they suffer with therapeutic resistance. Dysregulation or mutations in several oncogenic transcriptional factors such as c-MYC, nuclear factor κB (NFκB), NF-E2-related factor 2 (Nrf2), signal transducer and activator of transcription-3 (STAT-3) and p53, were reported to be associated with CRC. Understanding the transcription factors involved in various CRC pathogenesis will be useful in designing novel therapeutic strategies specifically targeting the dysregulated transcription factors. This chapter emphasizes the role of major transcription factors and their dysregulation in CRC.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68(2):317–329

    PubMed  CAS  Google Scholar 

  2. Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, …, Baylin SB (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23(23):8429–8439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Armaghany T, Wilson JD, Chu Q, Mills G (2012) Genetic alterations in colorectal cancer. Gastrointest Cancer Res: GCR 5(1):19

    Google Scholar 

  4. Armelao F, de Pretis G (2014) Familial colorectal cancer: a review. World J Gastroenterol: WJG 20(28):9292

    PubMed  PubMed Central  Google Scholar 

  5. Ashida R, Tominaga K, Sasaki E, Watanabe T, Fujiwara Y, Oshitani N, …, Arakawa T (2005) AP-1 and colorectal cancer. Inflammopharmacology 13(1):113–125

    Article  PubMed  CAS  Google Scholar 

  6. Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA, …, Ogino S (2010) HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 176(5):2292–2301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bajpai R, Nagaraju GP (2017) Specificity protein 1: its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol 113:1–7

    Article  PubMed  Google Scholar 

  8. Bandarra D, Rocha S (2015) HIF-1α, a novel piece in the NF-κB puzzle. Inflamm Cell Signal 2(2)

    Google Scholar 

  9. Banerjee D, Gorlick R, Liefshitz A, Danenberg K, Danenberg PC, Danenberg PV, …, Kemeny N (2000) Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res 60(9):2365–2367

    Google Scholar 

  10. Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282(2):224–258

    Article  PubMed  CAS  Google Scholar 

  11. Belaguli NS, Aftab M, Rigi M, Zhang M, Albo D, Berger DH (2010) GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia 12(11):856IN1–856865

    Article  CAS  Google Scholar 

  12. Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1(1):53–65

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boudjadi S, Beaulieu JF (2016) MYC and integrins interplay in colorectal cancer. Oncoscience 3(2):50

    PubMed  PubMed Central  Google Scholar 

  14. Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, …, Gorgoulis VG (2004) E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res 24(5A):3041–3048

    Google Scholar 

  15. Calonge MJ, Massagué J (1999) Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem 274(47):33637–33643

    Article  PubMed  CAS  Google Scholar 

  16. Cao D, Hou M, Guan YS, Jiang M, Yang Y, Gou HF (2009) Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9(1):432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Carrasco-Garcia E, Lopez L, Aldaz P, Arevalo S, Aldaregia J, Egaña L, …, Matheu A (2016) SOX9-regulated cell plasticity in colorectal metastasis is attenuated by rapamycin. Sci Rep 6:32350

    Google Scholar 

  18. Chang WC, Hung JJ (2012) Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci 19(1):94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chen L, Jiang B, Wang Z, Liu M, Ma Y, Yang H, …, Cui M (2013) Expression and prognostic significance of GATA-binding protein 2 in colorectal cancer. Med Oncol 30(2):498

    Google Scholar 

  20. Cheung KL, Lee JH, Khor TO, Wu TY, Li GX, Chan J, …, Kong ANT (2014) Nrf2 knockout enhances intestinal tumorigenesis in Apcmin/+ mice due to attenuation of anti-oxidative stress pathway while potentiates inflammation. Mol Carcinog 53(1):77–84

    Article  PubMed  CAS  Google Scholar 

  21. Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, …, Beug H (2005) Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia 7(6):545–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. D’Ignazio L, Batie M, Rocha S (2017) Hypoxia and inflammation in cancer, focus on HIF and NF-κB. Biomedicine 5(2):21

    Article  CAS  Google Scholar 

  23. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749

    Article  PubMed  CAS  Google Scholar 

  25. de Jong PR, Mo JH, Harris AR, Lee J, Raz E (2014) STAT3: an anti-invasive factor in colorectal cancer? Cancer 6(3):1394–1407

    Article  CAS  Google Scholar 

  26. Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, …, Castellazzi M (2009) Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One 4(9):e7035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Di Stefano L, Jensen MR, Helin K (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 22(23):6289–6298

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24(17):2810–2826

    Article  PubMed  CAS  Google Scholar 

  29. Ding Z, Yang L, Xie X, Xie F, Pan F, Li J, …, Liang H (2010) Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol 136(11):1697–1707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-κB in development and progression of human cancer. Virchows Arch 446(5):475–482

    Article  PubMed  CAS  Google Scholar 

  31. Dong YB, Yang HL, McMasters KM (2003) E2F-1 overexpression sensitizes colorectal cancer cells to camptothecin. Cancer Gene Ther 10(3):168–178

    Article  PubMed  CAS  Google Scholar 

  32. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262

    Article  PubMed  CAS  Google Scholar 

  33. Eilers M, Eisenman RN (2008) MYC’s broad reach. Genes Dev 22(20):2755–2766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Elliott MJ, Dong YB, Yang H, McMasters KM (2001) E2F-1 up-regulates c-MYC and p14arf and induces apoptosis in colon cancer cells. Clin Cancer Res 7(11):3590–3597

    PubMed  CAS  Google Scholar 

  35. Fang X, Yu W, Li L, Shao J, Zhao N, Chen Q, …, Lin B (2010) ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. Omics: J Integr Biol 14(4):369–384

    Article  PubMed  CAS  Google Scholar 

  36. Fang Z, Gong C, Liu H, Zhang X, Mei L, Song M, Qiu L, Luo S, Zhu Z, Zhang R, Hongqian G, Chen X (2015) E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem Biophys Res Commun 464(2):407–415

    Article  PubMed  CAS  Google Scholar 

  37. Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol: Mech Dis 6(1):479–507

    Article  CAS  Google Scholar 

  38. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, …, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403

    Article  PubMed  CAS  Google Scholar 

  39. Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol 11(2):308–318

    Article  PubMed  CAS  Google Scholar 

  40. Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R (2017) MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. Oncotarget

    Google Scholar 

  41. Gonda TJ, Ramsay RG (2015) Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer 15(11):686–694

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One 12(5):e0177549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Greijer AE, Delis-van Diemen PM, Fijneman RJ, Giles RH, Voest EE, van Hinsbergh VW, Meijer GA (2008) Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum. Virchows Arch 452(5):535–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Guo Z, Zhang W, Xia G, Niu L, Zhang Y, Wang X, …, Wang J (2010) Sp1 upregulates the four and half lim 2 (FHL2) expression in gastrointestinal cancers through transcription regulation. Mol Carcinog 49(9):826–836

    Google Scholar 

  46. Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C, …, Stoeltzing O (2010) Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer 10(1):668

    Google Scholar 

  47. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908

    Article  CAS  PubMed  Google Scholar 

  48. Hassanzadeh P (2011) Colorectal cancer and NF-κB signaling pathway. Gastroenterol Hepatol Bed to Bench 4(3):127–132

    Google Scholar 

  49. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, …, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  50. Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, …, Khalid-de Bakker CA (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15(12):3990–3997

    Article  PubMed  CAS  Google Scholar 

  51. Herkert B, Eilers M (2010) Transcriptional repression: the dark side of MYC. Genes Cancer 1(6):580–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27(50):6462–6472

    Article  PubMed  CAS  Google Scholar 

  53. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancer 6(3):1769–1792

    Article  CAS  Google Scholar 

  54. Huang P, He Y, Cao J, Dong A, Zhu W, Chen X, …, Nie J (2017) Up-regulated Nrf2 in colorectal carcinoma and predicts poor prognosis. Int J Clin Exp Med 10(1):1034–1042

    Google Scholar 

  55. Iacopetta B (2003) TP53 mutation in colorectal cancer. Hum Mutat 21(3):271–276

    Article  PubMed  CAS  Google Scholar 

  56. Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y, Mino-Kenduson M, …, Chung DC (2009) HIF-1α and HIF-2α have divergent roles in colon cancer. Int J Cancer 124(4):763–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ioannou M, Paraskeva E, Baxevanidou K, Simos G, Papamichali R, Papacharalambous C, …, Koukoulis G (2015) HIF-1α in colorectal carcinoma: review of the literature. J BUON 20(3):680–689

    Google Scholar 

  58. Jass JR (2007) Molecular heterogeneity of colorectal cancer: implications for cancer control. Surg Oncol 16:7–9

    Article  Google Scholar 

  59. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  60. Ji L, Wei Y, Jiang T, Wang S (2014) Correlation of Nrf2, NQO1, MRP1, cMYC and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int J Clin Exp Pathol 7(3):1124

    PubMed  PubMed Central  Google Scholar 

  61. Jiang X, Kim KJ, Ha T, Lee SH (2016) Potential dual role of activating transcription factor 3 in colorectal cancer. Anticancer Res 36(2):509–516

    PubMed  CAS  Google Scholar 

  62. Joerger AC, Fersht AR (2010) The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2(6):a000919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH, …, Ye SK (2008) STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination. Exp Mol Med 40(5):479–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691

    Article  PubMed  CAS  Google Scholar 

  65. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, …, Penn LZ (2017) MYC deregulation in primary human cancers. Genes 8(6):151

    Article  PubMed Central  CAS  Google Scholar 

  66. Kasahara M, Takahashi Y, Nagata T, Asai S, Eguchi T, Ishii Y, …, Ishikawa K (2000) Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. Clin Cancer Res 6(7):2707–2711

    Google Scholar 

  67. Katschinski DM, Le L, Schindler SG, Thomas T, Voss AK, Wenger RH (2004) Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1α stabilization. Cell Physiol Biochem 14(4–6):351–360

    Article  PubMed  CAS  Google Scholar 

  68. Kawasaki Y, Matsumura K, Miyamoto M, Tsuji S, Okuno M, Suda S, …, Akiyama T (2015) REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis. Sci Rep 5(1)

    Google Scholar 

  69. Kim ER, Chang DK (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol: WJG 20(29):9872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Klampfer L (2008) The role of signal transducers and activators of transcription in colon cancer. Front Biosci 13:2888–2899

    Article  PubMed  CAS  Google Scholar 

  71. Kormish JD, Sinner D, Zorn AM (2010) Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dyn 239(1):56–68

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, …, Semenza GL (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    Google Scholar 

  73. Lassmann S, Schuster I, Walch A, Göbel H, Jütting U, Makowiec F, …, Werner M (2007a) STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol 60(2):173–179

    Article  CAS  Google Scholar 

  74. Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M (2007b) Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal-and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 85(3):293–304

    Article  PubMed  CAS  Google Scholar 

  75. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lentjes MH, Niessen HE, Akiyama Y, De Bruine AP, Melotte V, Van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18

    Google Scholar 

  77. Li T, Luo W, Liu K, Lv X, Xi T (2015a) miR-31 promotes proliferation of colon cancer cells by targeting E2F2. Biotechnol Lett 37(3):523–532

    Article  PubMed  CAS  Google Scholar 

  78. Li W, Thakor N, Xu EY, Huang Y, Chen C, Yu R, …, Kong AN (2009) An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res gkp1048

    Google Scholar 

  79. Li XL, Zhou J, Chen ZR, Chng WJ (2015b) P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 21(1):84–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, …, Takabe K (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23(1):107–120

    Article  PubMed  CAS  Google Scholar 

  81. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, …, MacKay S (2001) Nuclear factor-κB is upregulated in colorectal cancer. Surgery 130(2):363–369

    Article  PubMed  CAS  Google Scholar 

  82. Liu X, Ji Q, Fan Z, Li Q (2015) Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 11(21):2911–2922

    Article  PubMed  CAS  Google Scholar 

  83. Lü B, Fang Y, Xu J, Wang L, Xu F, Xu E, …, Lai M (2008) Analysis of SOX9 expression in colorectal cancer. Am J Clin Pathol 130(6):897–904

    Article  PubMed  CAS  Google Scholar 

  84. Lundberg IV, Burström AL, Edin S, Eklöf V, Öberg Å, Stenling R, …, Wikberg ML (2014) SOX2 expression is regulated by BRAF and contributes to poor patient prognosis in colorectal cancer. PloS One 9(7):e101957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mady HH, Hasso S, Melhem MF (2002) Expression of E2F-4 gene in colorectal adenocarcinoma and corresponding covering mucosa: an immunohistochemistry, image analysis, and immunoblot study. Appl Immunohistochem Mol Morphol 10(3):225–230

    PubMed  CAS  Google Scholar 

  86. Mees C, Nemunaitis J, Senzer N (2009) Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16(2):103–112

    Article  PubMed  CAS  Google Scholar 

  87. Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22(7):578–593

    Article  CAS  PubMed  Google Scholar 

  88. Milton A, Luoto K, Ingram L, Munro S, Logan N, Graham AL, …, La Thangue NB (2006) A functionally distinct member of the DP family of E2F subunits. Oncogene 25(22):3212–3218

    Article  PubMed  CAS  Google Scholar 

  89. Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF (2015) Hypoxia inducible factor-1α: its role in colorectal carcinogenesis and metastasis. Cancer Lett 366(1):11–18

    Article  PubMed  CAS  Google Scholar 

  90. Nam SO, Yotsumoto F, Miyata K, Fukagawa S, Yamada H, Kuroki M, Miyamoto S (2015) Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer Med 4(4):575–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. No JH, Kim YB, Song YS (2014) Targeting nrf2 signaling to combat chemoresistance. J Cancer Prev 19(2):111–117

    Article  PubMed  PubMed Central  Google Scholar 

  92. Obuch JC, Ahnen DJ (2016) Colorectal cancer: genetics is changing everything. Gastroenterol Clin N Am 45(3):459–476

    Article  Google Scholar 

  93. Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Paquin MC, Leblanc C, Lemieux E, Bian B, Rivard N (2013) Functional impact of colorectal cancer-associated mutations in the transcription factor E2F4. Int J Oncol 43(6):2015–2022

    Article  PubMed  CAS  Google Scholar 

  95. Piulats J, Tarrasón G (2001) E2F transcription factors and cancer. Clin Transl Oncol 3(5):241–249

    CAS  Google Scholar 

  96. Prabhu VV, Hong B, Allen JE, Zhang S, Lulla AR, Dicker DT, El-Deiry WS (2016) Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-Jun-mediated ΔNp73 inhibition and p73 activation. Cancer Res 76(7):1989–1999

    Article  PubMed  CAS  Google Scholar 

  97. Pradhan MP, Prasad NKA, Palakal MJ (2012) A systems biology approach to the global analysis of transcription factors in colorectal cancer. BMC Cancer 12(1):331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rawłuszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodziński PP (2014) Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 12(8):1112–1127

    Article  PubMed  CAS  Google Scholar 

  99. Redell MS, Tweardy DJ (2006) Targeting transcription factors in cancer: challenges and evolving strategies. Drug Discov Today Technol 3(3):261–267

    Article  PubMed  Google Scholar 

  100. Rinkenbaugh AL, Baldwin AS (2016) The NF-κB pathway and cancer stem cells. Cell 5(2):16

    Article  CAS  Google Scholar 

  101. Rochlitz CF, Herrmann R, de Kant E (1996) Overexpression and amplification of c-MYC during progression of human colorectal cancer. Oncology 53(6):448–454

    Article  PubMed  CAS  Google Scholar 

  102. Sakamoto K, Maeda S (2010) Targeting NF-κB for colorectal cancer. Expert Opin Ther Targets 14(6):593–601

    Article  PubMed  CAS  Google Scholar 

  103. Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, ..., Omata M (2009) Constitutive NF-κB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15(7):2248–2258

    Article  PubMed  CAS  Google Scholar 

  104. Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1):15–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Saw CLL, Kong ANT (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin Ther Targets 15(3):281–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, …, Bader FG (2013) Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23(1):93–106

    Article  PubMed  CAS  Google Scholar 

  107. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    Article  CAS  PubMed  Google Scholar 

  108. She ZY, Yang WX (2015) SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol 94(12):547–563

    Article  PubMed  CAS  Google Scholar 

  109. Shen F, Li J, Cai W, Zhu G, Gu W, Jia L, Xu B (2013) GATA6 predicts prognosis and hepatic metastasis of colorectal cancer. Oncol Rep 30(3):1355–1361

    Article  PubMed  CAS  Google Scholar 

  110. Shen Z, Deng H, Fang Y, Zhu X, Ye GT, Yan L, …, Li G (2015) Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma. Oncotarget 6(24):20672

    Google Scholar 

  111. Shureiqi I, Zuo X, Broaddus R, Wu Y, Guan B, Morris JS, Lippman SM (2007) The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. FASEB J 21(3):743–753

    Article  PubMed  CAS  Google Scholar 

  112. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  113. Souza RF, Yin J, Smolinski KN, Zou TT, Wang S, Shi YQ, …, Simms L (1997) Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors. Cancer Res 57(12):2350–2353

    Google Scholar 

  114. Spitzner M, Roesler B, Bielfeld C, Emons G, Gaedcke J, Wolff HA, …, Wienands J (2014) STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer 134(4):997–1007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  115. Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21(1):71–85

    Article  PubMed  CAS  Google Scholar 

  116. Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E (1999) Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 81(4):535–538

    Article  PubMed  CAS  Google Scholar 

  117. Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41(3):185–192

    Article  PubMed  CAS  Google Scholar 

  118. Thompson MR, Xu D, Williams BR (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med 87(11):1053–1060

    Article  PubMed  CAS  Google Scholar 

  119. To SKY, Zeng WJ, Zeng JZ, Wong AST (2014) Hypoxia triggers a Nur77–β-catenin feed-forward loop to promote the invasive growth of colon cancer cells. Br J Cancer 110(4):935–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Triantafillidis JK, Nasioulas G, Kosmidis PA (2009) Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res 29(7):2727–2737

    PubMed  Google Scholar 

  121. Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41(16):2403–2414

    Article  CAS  PubMed  Google Scholar 

  122. Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP (2017) Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit Rev Oncol Hematol 113:22–27

    Article  PubMed  Google Scholar 

  123. Van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S (2011) Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 7(1):e1001285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA (1997) E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 17(12):7268–7282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Voboril R, Weberova-Voborilova J (2005) Constitutive NF-kappaB activity in colorectal cancer cells: impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis. Neoplasma 53(6):518–523

    Google Scholar 

  126. Wang B, Li Y, Tan F, Xiao Z (2016) Increased expression of SOX4 is associated with colorectal cancer progression. Tumor Biol 37(7):9131–9137

    Article  CAS  Google Scholar 

  127. Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, …, Qin HL (2013) SP1 mediates the link between methylation of the tumour suppressor miR-149 and outcome in colorectal cancer. J Pathol 229(1):12–24

    Article  CAS  Google Scholar 

  128. Wang Q, Qian J, Wang F, Ma Z (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol Rep 28(6):2029–2034

    Article  PubMed  CAS  Google Scholar 

  129. Wang S, Liu Z, Wang L, Zhang X (2009) NF-[kappa] B signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6(5):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wegner M (2010) All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 42:381–390

    Article  PubMed  CAS  Google Scholar 

  131. Weinberg RA (1994) Oncogenes and tumor suppressor genes. CA Cancer J Clin 44(3):160–170

    Article  PubMed  CAS  Google Scholar 

  132. Wierstra I (2008) Sp1: emerging roles—beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372(1):1–13

    Article  PubMed  CAS  Google Scholar 

  133. Wu H, Lin Y, Li W, Sun Z, Gao W, Zhang H, …, Chen L (2011) Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells. FASEB J 25(1):192–205

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wu ZY, Wei ZM, Sun SJ, Yuan J, Jiao SC (2014) Activating transcription factor 3 promotes colon cancer metastasis. Tumor Biol 35(8):8329

    Article  CAS  Google Scholar 

  135. Xanthoulis A, Tiniakos DG (2013) E2F transcription factors and digestive system malignancies: how much do we know? World J Gastroenterol: WJG 19(21):3189

    Article  PubMed  PubMed Central  Google Scholar 

  136. Xanthoulis A, Kotsinas A, Tiniakos D, Kittas C, Gorgoulis V (2012) The relationship between E2F family members and tumor growth in colorectal adenocarcinomas: a comparative immunohistochemical study of 100 cases. Proteins 8(10):17–21

    Google Scholar 

  137. Xu K, Wang J, Gao J, Di J, Jiang B, Chen L, …, Shen L (2016) GATA binding protein 2 overexpression is associated with poor prognosis in KRAS mutant colorectal cancer. Oncol Rep 36(3):1672–1678

    Article  PubMed  CAS  Google Scholar 

  138. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, …, Nakayama KI (2004) Phosphorylation-dependent degradation of c-MYC is mediated by the F-box protein Fbw7. EMBO J 23(10):2116–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yan C, Higgins PJ (2013) Drugging the undruggable: transcription therapy for cancer. Biochim Biophys Acta (BBA)-Rev Cancer 1835(1):76–85

    Article  CAS  Google Scholar 

  140. Yasui W, Fujimoto J, Suzuki T, Ono S, Naka K, Yokozaki H, Tahara E (1999) Expression of cell-cycle-regulating transcription factor E2F-1 in colorectal carcinomas. Pathobiology 67(4):174–179

    Article  PubMed  CAS  Google Scholar 

  141. Yeh JE, Toniolo PA, Frank DA (2013) Targeting transcription factors: promising new strategies for cancer therapy. Curr Opin Oncol 25(6):652–658

    Article  PubMed  CAS  Google Scholar 

  142. Yoshitaka T, Matsubara N, Ikeda M, Tanino M, Hanafusa H, Tanaka N, Shimizu K (1996) Mutations of E2F-4 trinucleotide repeats in colorectal cancer with microsatellite instability. Biochem Biophys Res Commun 227(2):553–557

    Article  PubMed  CAS  Google Scholar 

  143. Yu MH, Zhang W (2016) TEAD1 enhances proliferation via activating SP1 in colorectal cancer. Biomed Pharmacother 83:496–501

    Article  PubMed  CAS  Google Scholar 

  144. Zhang W, Hart J, McLeod HL, Wang HL (2005) Differential expression of the AP-1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. Am J Clin Pathol 124(1):11–19

    Article  PubMed  CAS  Google Scholar 

  145. Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, …, Huang B (2009) SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett 277(1):29–37

    Article  PubMed  CAS  Google Scholar 

  146. Zheng R, Blobel GA (2010) GATA transcription factors and cancer. Genes Cancer 1(12):1178–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

Uday Sankar Allam gratefully acknowledges the Dept. of Science and Technology (DST), India, for providing financial support through the Early Career Research Award (ECR/2015/000544). Sk. Md. Jasmine acknowledges the University Grants Commission (UGC), India, for the Maulana Azad National Fellowship (MANF). We also acknowledge the support extended by the Damien Foundation India Trust (DFIT), Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Sankar Allam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allam, U.S., Kamatham, S., Adarsha, M., Jasmine, S.M., Giri Prasad, P.V. (2017). Transcription Factors and Colorectal Cancer: An Overview. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_15

Download citation

Publish with us

Policies and ethics