Skip to main content

Strength Capacity of Steel Piles Filled with Concrete at Pile Top

  • Conference paper
  • First Online:
Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures (CIGOS 2017)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 8))

Included in the following conference series:

  • 2388 Accesses

Abstract

In the previous papers, the steel pile ultimate strength and plastic deformation capacity for local buckling is estimated with radius thickness ratio and shear span ratio. For real structures, concrete is filled into the pile top of steel piles to fix the connection between a steel pile and a reinforced concrete footing beam in. It is considered that the local buckling strength of steel piles with concrete at the pile top is larger than that of steel piles to prevent local buckling issued from filled concrete at the pile head. On the other hand, at the pile top filled with concrete, bending stress of steel pipes is not enough transmitted to a concrete member which slips on the steel pipe. Therefore, slip stoppers are attached to the steel pile top. The stress transfer mechanism between a steel pipe with slip stoppers and a concrete member has not been clarified In this paper, cyclic load tests of steel piles filled with concrete at the pile top with different axial force ratio are performed. The local buckling behavior of steel piles at pile top is elucidated and ultimate strength, deformation capacity and hysteretic energy absorption is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recommendations for design and building foundations, October 2001. (in Japanese)

    Google Scholar 

  2. Ochi, K., Kurobane, Y. Load-carrying and deformation capacities of circular tubular ctub columns. In: Proceeding of the Architectural Research Meetings in Kanto Chapter, pp. 597–598, September, 1997 (in Japanese)

    Google Scholar 

  3. Recommendations for design and construction of concrete filled tubular structures, January 2008 (in Japanese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Scientific Research (A) Numbers JP16H02374. The cyclic loading tests are funded by Japanese Technical Association for Steel Pipe Piles and Sheet Piles.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Matoba, M., Sato, M., Hirose, T., Kimura, Y. (2018). Strength Capacity of Steel Piles Filled with Concrete at Pile Top. In: Tran-Nguyen, HH., Wong, H., Ragueneau, F., Ha-Minh, C. (eds) Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures. CIGOS 2017. Lecture Notes in Civil Engineering , vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-6713-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6713-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6712-9

  • Online ISBN: 978-981-10-6713-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics