Skip to main content

Polymer-Based Responsive Hydrogel for Drug Delivery

  • Chapter
  • First Online:
Polymer Gels

Abstract

Responsive hydrogels comprise huge prospective in a variety of applications. The hydrogels change their properties in particular responses. To induce response in hydrogel system, various stimuli (chemical and physical) have been applied. Electric field, temperature, light, solvent composition, pressure, magnetic fields, and sound are used as physical stimuli. The chemical stimuli used are ions and pH. Application of responsive hydrogels has many fields, such as making chemical valves and artificial muscles, immobilization of cells and enzymes, drug delivery, biosensor, and concentrating dilute solutions in bioseparation. Although the concepts are sound, practical utility necessitates major improvements in the properties of hydrogel. The most considerable limitation of these responsive hydrogels is response time and that is too slow. As a result, fast responsive hydrogels are needed. This chapter presents an overview of the advances in the area of responsive hydrogels that have become the interest of most researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Giri TK, Tripathi DK, Ajazuddin, Alexander A (2012) A review on novel therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid and surfactant based self-micro emulsifying drug delivery system: a novel approach. Am J Drug Discov Dev 2:143–183

    Article  Google Scholar 

  • Albin G, Horbett TA, Ratner BD (1985) Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release 2:153–164

    Article  Google Scholar 

  • Albin G, Horbett TA, Miller SR, Ricker NL (1987) Theoretical and experimental studies of glucose sensitive membranes. J Control Release 7:267–291

    Article  Google Scholar 

  • Badwaik H, Giri TK, Nakhate KT, Kashyap P, Tripathi DK (2013) Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr Drug Deliv 10:587–600

    Article  Google Scholar 

  • Bae YH (1997) Stimuli-sensitive drug delivery. In: Park K (ed) Controlled drug delivery: challenge and strategies. American Chemical Society, Washington, DC, pp 147–160

    Google Scholar 

  • Baroli B (2006) Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J Chem Technol Biotechnol 81:491–499

    Article  Google Scholar 

  • Behra A, Giri TK, Tripathi DK, Ajazuddin, Alexander A (2012) An exhaustive review on recent advancement in pharmaceutical bioadhesive used for systemic drug delivery through oral mucosa for achieving maximum pharmacological response and effect. Int J Pharmacol 8:283–305

    Article  Google Scholar 

  • Bhaskar RK, Sparer RV, Himmelstein KJ (1985) Effect of an applied electric field on liquid crystalline membranes: control of permeability. J Membr Sci 24:83–96

    Article  Google Scholar 

  • Bhoyar N, Giri TK, Tripathi DK, Alexander A, Ajazuddin (2012) Recent advances in novel drug delivery system through gels: review. J Pharm Allied Health Sci 2:21–39

    Google Scholar 

  • Boustta M, Colombo PE, Lenglet S, Poujol S, Vert M (2014) Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release 174:1–6

    Article  Google Scholar 

  • Brocchini S, Duncan R (1999) Pendent drugs, release from polymers. In: Mathiowitz E (ed) Encyclopaedia of controlled drug delivery. Wiley, New York, pp 786–816

    Google Scholar 

  • Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11:439–457

    Article  Google Scholar 

  • Burgmeyer P, Murray RW (1982) An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode. J Am Chem Soc 104:6139–6140

    Article  Google Scholar 

  • Cartier S, Horbett TA, Ratner BD (1995) Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. J Membr Sci 106:17–24

    Article  Google Scholar 

  • Castelli F, Sarpietro MG, Micieli D, Ottimo S, Pitarresi G, Tripodo G, Carlisi B, Giammona G (2008) Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. Eur J Pharm Sci 35(2008):76–85

    Article  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  Google Scholar 

  • Chiu HC, Hsiue GH, Lee YP, Huang LW (1999) Synthesis and characterization of pH-sensitive dextran hydrogels as a potential colon-specific drug delivery system. J Biomater Sci Polym Ed 10:591–608

    Article  Google Scholar 

  • Cho YI, Park S, Jeong SY, Yoo HS (2009) In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan-doxorubicin conjugates. Eur J Pharm Biopharm 73:59–65

    Article  Google Scholar 

  • Chun KW, Lee JB, Kim SH, Park TG (2005) Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26:3319–3326

    Article  Google Scholar 

  • Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5:115–123

    Article  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  Google Scholar 

  • Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56:199–210

    Article  Google Scholar 

  • Eisenberg SR, Grodzinsky AJ (1987) The kinetics of chemically induced nonequilibrium swelling of articular cartilage and corneal stroma. J Biomech Eng 109:79–89

    Article  Google Scholar 

  • Firestone BA, Siegel RA (1991) Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci 43:901–914

    Article  Google Scholar 

  • Fujimoto KL, Ma Z, Nelson DM, Hashizume R, Guan J, Tobita K, Wagner WR (2009) Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 30:4357–4368

    Article  Google Scholar 

  • Garbern JC, Hoffman AS, Stayton PS (2010) Injectable pH- and temperature responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromol 11:1833–1839

    Article  Google Scholar 

  • Garner B, Georgevich A, Hodgson AJ, Liu L, Wallace GG (1999) Polypyrrole–heparin composites as stimulus-responsive substrates for endothelial cell growth. Inc J Biomed Mater Res 44:121–129

    Article  Google Scholar 

  • George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18:577–581

    Article  Google Scholar 

  • Giri TK, Kumar K, Alexander A, Ajazuddin, Badwaik H, Tripathy M, Tripathi DK (2013a) Novel controlled release solid dispersion for the delivery of diclofenac sodium. Curr Drug Deliv 10:435–443

    Article  Google Scholar 

  • Giri TK, Thakur D, Alexander A, Ajazuddin, Badwaik H, Tripathy M, Tripathi DK (2013b) Biodegradable IPN hydrogel beads of pectin and grafted alginate for controlled delivery of diclofenac sodium. J Mater Sci Mater Med 24:1179–1190

    Article  Google Scholar 

  • Giri TK, Verma S, Alexander A, Ajazuddin, Badwaik H, Tripathy M, Tripathi DK (2013c) Crosslinked biodegradable alginate hydrogel floating beads for stomach site specific controlled delivery of metronidazole. Farmacia 61:533–550

    Google Scholar 

  • Golden A, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725

    Article  Google Scholar 

  • Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 81:135–149

    Article  Google Scholar 

  • Grimshaw PE, Grodzinsky AJ, Yarmush ML, Yarmush DM (1989) Dynamic membranes for protein transport: chemical and electrical control. Chem Eng Sci 44:827–840

    Article  Google Scholar 

  • Grodzinsky AJ, Grimshaw PE (1990) Electrically and chemically controlled hydrogels for drug delivery. In: Kost I (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton, pp 47–64

    Google Scholar 

  • Guan J, Hong Y, Ma Z, Wagner WR (2008) Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability. Biomacromol 9:1283–1292

    Article  Google Scholar 

  • Guo K, Chu CC (2007) Controlled release of paclitaxel from biodegradable unsaturated poly(ester amide)s/poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 18:489–504

    Article  Google Scholar 

  • Heller J, Trescony PV (1979) Controlled drug release by polymer dissolution. II. An enzyme mediated delivery system. J Pharm Sci 68:919–921

    Article  Google Scholar 

  • Heller J, Baker RW, Gale RM, Rodin JO (1978) Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers. Properties and theory. J Appl Polym Sci 22:1991–2009

    Article  Google Scholar 

  • Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Glucose-responsive gel from phenylborate polymer and polyvinyl alcohol: prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 14:289–293

    Article  Google Scholar 

  • Hoffman AS (1997) Intelligent polymers. In: Park K (ed) Controlled drug delivery: challenge and strategies. American Chemical Society, Washington, DC, pp 485–497

    Google Scholar 

  • Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  Google Scholar 

  • Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Lee KC, Kim BS, Kim SW, Lee DS (2008) Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials 29:2527–2534

    Article  Google Scholar 

  • Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, Khademhosseini A (2010) Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2:035003

    Article  Google Scholar 

  • Ishihara K, Matsui K (1986) Glucose-responsive insulin release from polymer capsule. J Polym Sci Polym Lett Ed 24:413–417

    Article  Google Scholar 

  • Ishihara K, Kobayashi M, Ishimaru N, Shinohara I (1984) Glucose induced permeation control of insulin through a complex membrane consisting of immobilized glucose oxidase and a polyamine. Polym J 16:625–631

    Article  Google Scholar 

  • Ishihara K, Muramoto N, Fuji H, Shinohara I (1985a) pH-induced reversible permeability control of the 4-carboxy acrylanilide-methyl methacrylate copolymer membrane. J Polym Sci Polym Chem Ed 23:2841–2850

    Article  Google Scholar 

  • Ishihara K, Muramoto N, Fuji H, Shinohara I (1985b) Preparation and permeability of urea-responsive membrane consisting of immobilized urease and poly(aromatic carboxylic acid). J Polym Sci Polym Lett Ed 23:531–535

    Article  Google Scholar 

  • Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E (2011) Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 154:258–266

    Article  Google Scholar 

  • Kamath K, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11:59–84

    Article  Google Scholar 

  • Kang SI, Bae YH (2003) A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J Control Release 86(1):115–121

    Google Scholar 

  • Kang EY, Moon HJ, Joo MK, Jeong B (2012) Thermogelling chitosan-g-(PAF-PEG) aqueous solution as an injectable scaffold. Biomacromol 13:1750–1757

    Article  Google Scholar 

  • Kitano S, Koyama Y, Kataoka K, Okano T, Sakurai Y (1992) A novel drug delivery system utilizing a glucose responsive polymer complex between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with a phenyl boronic acid moiety. J Control Release 19:162–170

    Article  Google Scholar 

  • Klier J, Peppas NA (1989) Complex-forming hydrogels sensitive to physiological conditions. Proc Int Symp Control Release Bioact Mater 16:101–102

    Google Scholar 

  • Klumb LA, Horbett TA (1992) Design of insulin delivery devices based on glucose sensitive membranes. J Control Release 18:59–80

    Article  Google Scholar 

  • Kost J, Horbett TA, Ratner BD, Singh M (1985) Glucose-sensitive membranes containing glucose oxidase: swelling, activity, and permeability studies. J Biomed Mater Res 19:1117–1122

    Article  Google Scholar 

  • Kumar A, Lahiri SS, Singh H (2006) Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int J Pharm 323:117–124

    Article  Google Scholar 

  • Kundu J, Poole-Warren LA, Martens P, Kundu SC (2012) Silk fibroin/poly(vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs. Acta Biomater 8:1720–1729

    Article  Google Scholar 

  • Kwon IC, Bae YH, Okano T, Kim SW (1991) Drug release from electric current sensitive polymers. J Control Release 17:149–156

    Article  Google Scholar 

  • Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    Article  Google Scholar 

  • Lee YJ, Pruzinsky SA, Braun PV (2004) Glucose sensitive inverse opal hydrogels: analysis of optical diffraction response. Langmuir 20:3096–3106

    Article  Google Scholar 

  • Lee SY, Tae G, Kim YH (2007) Thermal gellation and photo-polymerization of diacrylated Pluronic F 127. J Biomater Sci Polym Ed 18:1335–1353

    Article  Google Scholar 

  • Leong W, Lau TT, Wang DA (2013) A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater 9:6459–6467

    Article  Google Scholar 

  • Li Y, Neoh KG, Kang ET (2005) Controlled release of heparin from polypyrrole-poly(vinyl alcohol) assembly by electrical stimulation. J Biomed Mater Res 73:171–181

    Article  Google Scholar 

  • Li Q, Wang J, Shahani S, Sun DD, Sharma B, Elisseeff JH, Leong KW (2006) Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27:1027–1034

    Article  Google Scholar 

  • Li Z, Guo X, Matsushita S, Guan J (2011) Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials 32:3220–3232

    Article  Google Scholar 

  • Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32:9685–9695

    Article  Google Scholar 

  • Lucisano JY, Armour JC, Gough DA (1987) In vitro stability of an oxygen sensor. Anal Chem 59:736–739

    Article  Google Scholar 

  • Mamada A, Tanaka T, Kungwachakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules 23:1517–1519

    Article  Google Scholar 

  • Markland P, Zhang Y, Amidon GL, Yang VC (1999) A pH- and ionic strength-responsive polypeptide hydrogel: synthesis, characterization, and preliminary protein release studies. J Biomed Mater Res 47:595–602

    Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–6392

    Google Scholar 

  • Missirlis D, Kawamura R, Tirelli N, Hubbell JA (2006) Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur J Pharm Sci 29:120–129

    Article  Google Scholar 

  • Na K, Bae YH (2005) pH-sensitive polymers for drug delivery. In: Kwon GS (ed) Polymeric drug delivery systems. Taylor & Francis, Boca Raton, pp 129–194

    Google Scholar 

  • Neradovic D, Hinrichs WLJ, Kettenes-van den Bosch JJ, Hennink WE (1999) Poly(N-isopropylacrylamide) with hydrolyzable lactic acid ester side groups: a new type of thermosensitive polymer. Macromol Rapid Commun 20:577–581

    Article  Google Scholar 

  • Nguyen K, Dang PN, Alsberg E (2013) Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells. Acta Biomater 9:4487–4495

    Article  Google Scholar 

  • Nussbaum JH, Grodzinsky AJ (1981) Proton diffusion-reaction in a protein polyelectrolyte membrane and the kinetics of electromechanical forces. J Membr Sci 8:193–219

    Article  Google Scholar 

  • Obaidat AA, Park K (1996) Characterization of glucose dependent gel–sol phase transition of the polymeric glucose–concanavalin A hydrogel system. Pharm Res 13:989–995

    Article  Google Scholar 

  • Obaidat AA, Park K (1997) Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18:801–806

    Article  Google Scholar 

  • Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444

    Article  Google Scholar 

  • Obara K, Ishihara M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, Saito Y, Yura H, Matsui T, Hattori H, Takase B, Ishihara M, Kikuchi M, Maehara T (2005) Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 110:79–89

    Article  Google Scholar 

  • Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  Google Scholar 

  • Pang SC, Chin SF, Ay SH, Hong FM (2011) Starch-maleate-polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydr Polym 84:424–429

    Article  Google Scholar 

  • Park K, Park H (1999) Smart hydrogels. In: Salamone JC (ed) Concise polymeric materials encyclopedia. CRC Press, Boca Raton, pp 1476–1478

    Google Scholar 

  • Park K, Shalaby WSW, Park H (1993) Biodegradable hydrogels for drug delivery. Technomic, Lancaster

    Google Scholar 

  • Park MR, Chun C, Ahn SW, Ki MH, Cho CS, Song SC (2010a) Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J Control Release 147:359–367

    Article  Google Scholar 

  • Park MR, Chun C, Cho CS, Song SC (2010b) Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel. Eur J Pharm Biopharm 76:179–188

    Article  Google Scholar 

  • Park MR, Seo BB, Song SC (2013) Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34:1327–1336

    Article  Google Scholar 

  • Pasechnik VA, Cherkosov AN, Zhemko VP, Chechina VV, Alimardinov RS (1979) Effect of direct current on the permeability of ultrafiltration membranes. Kolloid Zh 41:586–590

    Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  Google Scholar 

  • Pitarresi G, Palumbo FS, Giammona G, Casadei MA, Micheletti MF (2003) Biodegradable hydrogels obtained by photocrosslinking of dextran and polyaspartamide derivatives. Biomaterials 24:4301–4313

    Article  Google Scholar 

  • Pitarresi G, Casadei MA, Mandracchia D, Paolicelli P, Palumbo FS, Giammona G (2007) Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery. J Control Release 119:328–338

    Article  Google Scholar 

  • Pluta J, Karolewicz B (2004) Hydrogels: properties and application in the technology of drug form I. The characteristics hydrogels. Polym Med 34:3–19

    Google Scholar 

  • Podual K, Doyle FJI, Peppas NA (2000) Preparation and dynamic response of cationic copolymer hydorgels containing glucose oxidase. Polymer 41:3975–3983

    Article  Google Scholar 

  • Sawahata K, Hara M, Yasunaga H, Osada Y (1990) Electrically controlled drug delivery system using polyelectrolyte gels. J Control Release 14:253–262

    Article  Google Scholar 

  • Schild HG, Tirrell DA (1990) Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. J Phys Chem 94:4352–4356

    Article  Google Scholar 

  • Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB, Schmidt CE (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31:3930–3940

    Article  Google Scholar 

  • Serra L, Domenech J, Peppas NA (2006) Design of poly (ethylene glycol)-tethered copolymers as novel mucoadhesive drug delivery systems. Eur J Pharm Biopharm 6:11–18

    Article  Google Scholar 

  • Shiga T, Hirose Y, Okada A, Kurauchi T (1992) Electric field-associated deformation of polyelectrolyte gel near a phase transition point. J Appl Polym Sci 46:635–640

    Article  Google Scholar 

  • Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y (1994) Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials 15:121–128

    Article  Google Scholar 

  • Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33(11):3143–3152

    Google Scholar 

  • Siegel RA (1993) Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. Adv Polym Sci 109:233–267

    Article  Google Scholar 

  • Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release 8:179–182

    Article  Google Scholar 

  • Siegwart DJ, Bencherif SA, Srinivasan A, Hollinger JO, Matyjaszewski K (2008) Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. J Biomed Mater Res Part A 87:345–358

    Article  Google Scholar 

  • Suzuki A, Tanaka T (1990) Phase transition in polymer gel induced by visible light. Nature 346(6282):345–347

    Google Scholar 

  • Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21:790–801

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustainable Chem Eng 2(12):2637–2652

    Article  Google Scholar 

  • Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  Google Scholar 

  • Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustainable Chem Eng 4:1–17

    Article  Google Scholar 

  • Tian M, Yang Z, Kuwahara K, Nimni ME, Wan C, Han B (2012) Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 8:753–762

    Article  Google Scholar 

  • Tripodo G, Pitarresi G, Cavallaro G, Palumbo FS, Giammona G (2009) Controlled release of IgG by novel UV induced polysaccharide/poly(amino acid) hydrogels. Macromol Biosci 9(4):393–401

    Google Scholar 

  • Twaites B, de las Heras Alarcon C, Alexander C (2005) Synthetic polymers as drugs and therapeutics. J Mater Chem 15:441–455

    Google Scholar 

  • Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110(3):531–541

    Google Scholar 

  • Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  Google Scholar 

  • Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 120(3):233–241

    Google Scholar 

  • Wust S, Godla ME, Muller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640

    Article  Google Scholar 

  • Yui N, Okano T, Sakurai Y (1993) Photo-responsive degradation of heterogeneous hydrogels comprising crosslinked hyaluronic acid and lipid microspheres for temporal drug delivery. J Control Release 26:141–145

    Google Scholar 

  • Zhang X, Li Y, Hu Z, Littler CL (1995) Bending of N‐isopropylacrylamide gel under the influence of infrared light. J Chem Phys 102:551–555

    Google Scholar 

  • Zhao S, Cao M, Li H, Li L, Xu W (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(epsilon-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345(3):425–431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumarasamy, D., Ghosh, M.K., Giri, T.K. (2018). Polymer-Based Responsive Hydrogel for Drug Delivery. In: Thakur, V., Thakur, M., Voicu, S. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6080-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6080-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6079-3

  • Online ISBN: 978-981-10-6080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics