Skip to main content

Response Theory and Molecular Properties

  • Chapter
  • First Online:
Frontiers of Quantum Chemistry

Abstract

The calculation of molecular properties, both static and dynamic, is a central goal of theoretical chemical physics. Within response theory, time-dependent properties are obtained as functional derivatives of the quantum mechanical action functional. We review how linear and nonlinear response properties may be derived from the action functional using exact electronic states, as well as within time-dependent density functional theory. Particular emphasis is given to recently discovered spurious poles in approximate nonlinear response functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Tapavicza, A.M. Meyer, F. Furche, Phys. Chem. Chem. Phys. 13(47), 20986 (2011), https://doi.org/10.1039/c1cp21292c

  2. J.C. Vincent, M. Muuronen, K.C. Pearce, L.N. Mohanam, E. Tapavicza, F. Furche, J. Phys. Chem. Lett. 7(20), 4185 (2016), https://doi.org/10.1021/acs.jpclett.6b02037

  3. Z. Li, B. Suo, W. Liu, J. Chem. Phys. 141(24), 244105 (2014), https://doi.org/10.1063/1.4903986

  4. Q. Ou, G.D. Bellchambers, F. Furche, J.E. Subotnik, J. Chem. Phys. 142(6), 064114 (2015), https://doi.org/10.1063/1.4906941

  5. X. Zhang, J.M. Herbert, J. Chem. Phys. 142(6), 064109 (2015), https://doi.org/10.1063/1.4907376

  6. E. Dalgaard, Phys. Rev. A 26, 42 (1982), https://doi.org/10.1103/PhysRevA.26.42

  7. S.M. Parker, S. Roy, F. Furche, J. Chem. Phys. 145(13), 134105 (2016), https://doi.org/10.1063/1.4963749

  8. Z. Hu, J. Autschbach, L. Jensen, J. Chem. Theory Comput. 12(3), 1294 (2016), https://doi.org/10.1021/acs.jctc.5b01060

  9. P.A.M. Dirac, Phys. Zeit. der Sowjetunion 3, 64 (1933)

    Google Scholar 

  10. H. Sambe, Phys. Rev. A 7(6), 2203 (1973), https://doi.org/10.1103/PhysRevA.7.2203

  11. J.S. Howland, Math. Ann. 207(4), 315 (1974), https://doi.org/10.1007/BF01351346

  12. J. Olsen, P. Jorgensen, J. Chem. Phys. 82, 3235 (1985), https://doi.org/10.1063/1.448223

  13. R. van Leeuwen, Int. J. Mod. Phys. B 15, 1969 (2001), https://doi.org/10.1142/S021797920100499X

  14. R. van Leeuwen, Phys. Rev. Lett. 80, 1280 (1998), https://doi.org/10.1103/PhysRevLett.80.1280

  15. E. Wigner, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 35, 477 (1935)

    Google Scholar 

  16. T. Helgaker, P. Jørgensen, Calculation of geometrical derivatives in molecular electronic structure theory, in Methods in Computational Molecular Physics (Springer US, Boston, MA, 1992), pp. 353–421, https://doi.org/10.1007/978-1-4615-7419-4_15

  17. P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 44(3), 602 (1972), https://doi.org/10.1103/RevModPhys.44.602

  18. J.E. Rice, N.C. Handy, J. Chem. Phys. 94(7), 4959 (1991), https://doi.org/10.1063/1.460558

  19. J.E. Rice, N.C. Handy, Int. J. Quantum Chem. 43(1), 91 (1992), https://doi.org/10.1002/qua.560430110

  20. K. Sasagane, F. Aiga, R. Itoh, J. Chem. Phys. 99(5), 3738 (1993), https://doi.org/10.1063/1.466123

  21. O. Christiansen, P. Jørgensen, C. Hättig, Int. J. Quant. Chem. 68(1), 1 (1998), https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z

  22. F. Pawłowski, J. Olsen, P. Jorgensen, J. Chem. Phys 142(11), 114109 (2015), https://doi.org/10.1063/1.4913364

  23. D.M. Bishop, J. Chem. Phys. 100(9), 6535 (1994), https://doi.org/10.1063/1.467062

  24. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984), https://doi.org/10.1103/PhysRev.140.A1133

  25. E.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21, 255 (1990), https://doi.org/10.1016/S0065-3276(08)60600-0

  26. R. Neumann, R.H. Nobes, N.C. Handy, Mol. Phys. 87, 1 (1996), https://doi.org/10.1080/00268979600100011

  27. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996), https://doi.org/10.1063/1.471637

  28. J.E. Bates, F. Furche, J. Chem. Phys. 137, 164105 (2012), https://doi.org/10.1063/1.4759080

  29. M.E. Casida, Time-dependent density functional response theory for molecules, in Recent Advances in Computational Chemistry, vol. 1 (World Scientific, Singapore, 1995), pp. 155–192

    Google Scholar 

  30. R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998), https://doi.org/10.1021/ja00023a041

  31. F. Furche, J. Chem. Phys. 114, 5982 (2001), https://doi.org/10.1063/1.1353585

Download references

Acknowledgements

The authors would like to acknowledge helpful discussions with Sreeganesh Balasubramani. This material is based on work supported by the US Department of Energy under Award Number DE-SC0008694. SMP is supported by an Arnold O. Beckman Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipp Furche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parker, S.M., Furche, F. (2018). Response Theory and Molecular Properties. In: Wójcik, M., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds) Frontiers of Quantum Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5651-2_4

Download citation

Publish with us

Policies and ethics