Skip to main content

Cytomics of Oxidative Stress: Probes and Problems

  • Chapter
  • First Online:
Single Cell Analysis

Abstract

Oxidative stress has been implicated in cellular senescence and aging, as well as in the onset and progression of many diverse genetic and acquired diseases and conditions. However, reactive oxygen (ROS) and nitrogen (RNS) species initiating oxidative stress also serve important regulatory roles, mediated by intercellular and intracellular signaling, adaptation to endogenous and exogenous stress, and destruction of invading pathogens. Fluorescence-based analysis of oxidative stress and related processes is an important cytomic application; almost 4000 papers were published between 1989 and 2016. To ascertain the specific role of ROS and RNS in oxidative stress studies by cytomic methodologies, it is essential to detect and characterize these species accurately. Unfortunately, the detection and quantitation of individual intracellular ROS and RNS remains a challenge, but different, complementary cytometric strategies directed toward other endpoints of oxidative stress may also be considered. In this chapter we present and briefly discuss the limitations and perspectives of such approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 210:1203–1209

    Google Scholar 

  2. Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18 PubMed PMID: 10672226

    Article  Google Scholar 

  3. Clancy D, Birdsall J (2013) Flies, worms and the free radical theory of ageing. Ageing Res Rev 12:404–412. doi:10.1016/j.arr.2012.03.011

    Article  Google Scholar 

  4. Forman HJ, Augusto O, Brigelius-Flohe R, Dennery PA, Kalyanaraman B, Ischiropoulos H, Mann GE, Radi R, Roberts LJ 2nd, Viña J, Davies KJ (2015) Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med 78:233–235. doi:10.1016/j.freeradbiomed.2014.10.504

    Article  Google Scholar 

  5. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016:1245049. doi:10.1155/2016/1245049

    Google Scholar 

  6. Speckmann B, Steinbrenner H, Grune T, Klotz LO (2016) Peroxynitrite: from interception to signaling. Arch Biochem Biophys 595:153–160. doi:10.1016/j.abb.2015.06.022

    Article  Google Scholar 

  7. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  Google Scholar 

  8. Viña J, Borrás C, Miquel J (2007) Theories of ageing. IUBMB Life 59:249–254 PubMed PMID: 17505961

    Article  Google Scholar 

  9. Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–407. doi:10.1016/j.freeradbiomed.2016.07.003

    Article  Google Scholar 

  10. Hayashi G, Cortopassi G (2015) Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med 88:10–17. doi:10.1016/j.freeradbiomed.2015.05.039

    Article  Google Scholar 

  11. Moulin M, Ferreiro A (2016) Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin Cell Dev Biol. pii: S1084–9521(16) 30240-3. doi:10.1016/j.semcdb.2016.08.003

  12. Beltrán B, Nos P, Dasí F, Iborra M, Bastida G, Martínez M, O’Connor JE, Sáez G, Moret I, Ponce J (2010) Mitochondrial dysfunction, persistent oxidative damage, and catalase inhibition in immune cells of naïve and treated Crohn’s disease. Inflamm Bowel Dis 16:76–86. doi:10.1002/ibd.21027

    Article  Google Scholar 

  13. Battacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354. doi:10.1152/physrev.00040.2012

    Article  Google Scholar 

  14. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 16:26087–26124. doi:10.3390/ijms161125942

    Article  Google Scholar 

  15. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 71:40–56. doi:10.1016/j.vph.2015.03.005

    Article  Google Scholar 

  16. Santilli F, D’Ardes D, Davì G (2015) Oxidative stress in chronic vascular disease: from prediction to prevention. Vascul Pharmacol 74:23–37. doi:10.1016/j.vph.2015.09.003

    Article  Google Scholar 

  17. Li H, Horke S, Förstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237:208–219. doi:10.1016/j.atherosclerosis.2014.09.001

    Article  Google Scholar 

  18. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31:631–641. doi:10.1016/j.cjca.2015.02.008

    Article  Google Scholar 

  19. Fuentes E, Palomo I (2016) Role of oxidative stress on platelet hyperreactivity during aging. Life Sci 148:17–23. doi:10.1016/j.lfs.2016.02.026

    Article  Google Scholar 

  20. Collado R, Ivars D, Oliver I, Tormos C, Egea M, Miguel A, Sáez GT, Carbonell F (2014) Increased oxidative damage associated with unfavorable cytogenetic subgroups in chronic lymphocytic leukemia. Biomed Res Int 2014:686392. doi:10.1155/2014/686392

    Article  Google Scholar 

  21. Oh B, Figtree G, Costa D, Eade T, Hruby G, Lim S, Elfiky A, Martine N, Rosenthal D, Clarke S, Back M (2016) Oxidative stress in prostate cancer patients: a systematic review of case control studies. Prostate Int 4:71–87. doi:10.1016/j.prnil.2016.05.002

    Article  Google Scholar 

  22. Zhou L, Wen J, Huang Z, Nice EC, Huang C, Zhang H, Li Q (2016) Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis. Proteomics Clin Appl. 20 Oct 2016. doi:10.1002/prca.201600089. (Epub ahead of print)

  23. Marengo B, Nitti M, Furfaro AL, Colla R, Ciucis CD, Marinari UM, Pronzato MA, Traverso N, Domenicotti C (2016) Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev 2016:6235641. doi:10.1155/2016/6235641

    Article  Google Scholar 

  24. Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T (2016) Overproduction of reactive oxygen species—obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 28:383–396. doi:10.21147/j.issn.1000-9604.2016.04.01

    Article  Google Scholar 

  25. Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, Isaguliants MG (2016) Oxidative stress during HIV infection: mechanisms and consequences. Oxid Med Cell Longev 2016:8910396 PubMed PMID:27829986

    Article  Google Scholar 

  26. Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, Hakim J, Israel N, Gougerot-Pocidalo MA (2001) The role of phagocytes in HIV-related oxidative stress. J Clin Virol 20:99–109 PubMed PMID: 11166656

    Article  Google Scholar 

  27. Henchcliffe C, Beal M (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Clin Practice Neurology 4:600–609. doi:10.1038/ncpneuro0924

    Article  Google Scholar 

  28. Barnham K, Masters C, Busch AJ (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. doi:10.1038/nrd1330

    Article  Google Scholar 

  29. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661. doi:10.1007/s12035-014-9053-6

    Article  Google Scholar 

  30. Rani V, Deep G, Singh RK, Palle K, Yadav UC (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193. doi:10.1016/j.lfs.2016.02.002

    Article  Google Scholar 

  31. Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–407. doi:10.1016/j.freeradbiomed.2016.07.003

    Article  Google Scholar 

  32. Dugas B, Debré P, Moncada S (1995) Nitric oxide, a vital poison inside the immune and inflammatory network. Res Immunol 146:664–670 PubMed PMID: 8852607

    Article  Google Scholar 

  33. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531 PubMed PMID: 17885213

    Article  Google Scholar 

  34. Speckmann B, Steinbrenner H, Grune T, Klotz LO (2016) Peroxynitrite: from interception to signaling. Arch Biochem Biophys 595:153–160. doi:10.1016/j.abb.2015.06.022

    Article  Google Scholar 

  35. El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM (2016) Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 273:180–193. doi:10.1111/imr.12447

    Article  Google Scholar 

  36. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293. doi:10.1016/j.freeradbiomed.2009.05.026

    Article  Google Scholar 

  37. Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428. doi:10.1016/j.arr.2012.05.001

    Article  Google Scholar 

  38. Gibellini L, De Biasi S, Pinti M, Nasi M, Riccio M, Carnevale G, Cavallini GM, Sala de Oyanguren FJ, O’Connor JE, Mussini C, De Pol A, Cossarizza A (2012) The protease inhibitor atazanavir triggers autophagy and mitophagy in human preadipocytes. AIDS. 26:2017–2026. doi:10.1097/QAD.0b013e328359b8be

    Article  Google Scholar 

  39. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511. doi:10.1038/nchembio.607

    Article  Google Scholar 

  40. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014:761264. doi:10.1155/2014/761264

    Article  Google Scholar 

  41. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848 PubMed PMID: 10922044

    Article  Google Scholar 

  42. Karupiah G, Hunt NH, King NJ, Chaudhri G (2000) NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response. Rev Immunogenet 2:387–415 PubMed PMID: 11256747

    Google Scholar 

  43. Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48. doi:10.1146/annurev.micro.55.1.21

    Article  Google Scholar 

  44. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of redox switch in the OxyR transcription factor. Cell 105:103–113 PMID: 11301006

    Article  Google Scholar 

  45. Park HS, Park D, Bae YS (2006) Molecular interaction of NADPH Oxidase 1 with betaPix and Nox Organizer 1. Biochem Biophys Res Commun 339:985–990. doi:10.1016/j.bbrc.2005.11.108

    Article  Google Scholar 

  46. Burch PM, Heintz HH (2005) Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Sign 7:741–751 PubMed PMID: 15890020

    Article  Google Scholar 

  47. Havens CG, Ho A, Yoshioka N, Dowdy SF (2006) Regulation of late G1/S phase transition and APCCdh1 by reactive oxygen species. Mol Cell Biol 26:4701–4711. doi:10.1128/MCB.00303-06

    Article  Google Scholar 

  48. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Diff 13:730–737. doi:10.1038/sj.cdd.4401830

    Article  Google Scholar 

  49. Tormos C, Javier Chaves F, Garcia MJ, Garrido F, Jover R, O’Connor JE, Iradi A, Oltra A, Oliva MR, Sáez GT (2004) Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells. Cancer Lett 208:103–113. doi:10.1016/j.canlet.2003.11.007

    Article  Google Scholar 

  50. Jang JY, Min JH, Chae YH, Baek JY, Wang SB, Park SJ, Oh GT, Lee SH, Ho YS, Chang TS (2014) Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation. Antioxid Redox Sign 20:2528–2540. doi:10.1089/ars.2013.5337

    Article  Google Scholar 

  51. Banchard JL, Wholey W-Y, Conlon EM, Pomposiello PJ (2007) Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One. 14 Nov 2007; 2(11):e1186. Erratum in: PLoS One. 2012; 7(11). doi:10.1371/annotation/5cba04eb-5172-43a7-ad92-10efcd3858c9

  52. Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively modified proteins. Proteomics 3:1145–1153. doi:10.1002/pmic.200300435

    Article  Google Scholar 

  53. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Rev Microbiol 11:443–454

    Article  Google Scholar 

  54. Bielski BHJ, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2 with unsaturated fatty acids. J Biol Chem 258:4758–4761 PMID: 6833274

    Google Scholar 

  55. Gros L, Saparbaev MK, Laval L (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21:8905–8925. doi:10.1038/sj.onc.1206005

    Article  Google Scholar 

  56. Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E (2003) 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat Res 531:127–139 PubMed PMID: 14637250

    Article  Google Scholar 

  57. Barregard L, Møller P, Henriksen T, Mistry V, Koppen G, Rossner P Jr, Sram RJ, Weimann A, Poulsen HE, Nataf R, Andreoli R, Manini P, Marczylo T, Lam P, Evans MD, Kasai H, Kawai K, Li YS, Sakai K, Singh R, Teichert F, Farmer PB, Rozalski R, Gackowski D, Siomek A, Saez GT, Cerda C, Broberg K, Lindh C, Hossain MB, Haghdoost S, Hu CW, Chao MR, Wu KY, Orhan H, Senduran N, Smith RJ, Santella RM, Su Y, Cortez C, Yeh S, Olinski R, Loft S, Cooke MS (2013) Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2’-deoxyguanosine. Antioxid Redox Sign 18:2377–2391. doi:10.1089/ars.2012.4714

    Article  Google Scholar 

  58. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Sign 23:1144–1170. doi:10.1089/ars.2015.6317

    Article  Google Scholar 

  59. Halliwell B, Gutteridge JMC (2004) Measuring reactive species and oxidative damage in vivo and in cell cultures: how should you do it and what do the results mean? Br J Pharmacol 142:231–252. doi:10.1038/sj.bjp.0705776

    Article  Google Scholar 

  60. Bartosz G (2006) Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 368:53–76. doi:10.1016/j.cca.2005.12.039

    Article  Google Scholar 

  61. Lu C, Sung G, Lin JM (2006) Reactive oxygen species and their chemiluminescence-detection methods. Trends Anal Chem 25:985–995. doi:10.1016/j.trac.2006.07.007

    Article  Google Scholar 

  62. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80. doi:10.1016/j.jbbm.2005.10.003

    Article  Google Scholar 

  63. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022. doi:10.1016/j.freeradbiomed.2007.06.026

    Article  Google Scholar 

  64. Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6. doi:10.1016/j.freeradbiomed.2011.09.030

    Article  Google Scholar 

  65. Debowska K, Debski D, Hardy M, Jakubowska M, Kalyanaraman B, Marcinek A, Michalski R, Michalowski B, Ouari O, Sikora A, Smulik R, Zielonka J (2015) Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes–Limitations, progress, and perspectives. Pharmacol Rep 67:756–764. doi:10.1016/j.pharep.2015.03.016

    Article  Google Scholar 

  66. Martínez-Pastor F, Mata-Campuzano M, Alvarez-Rodríguez M, Alvarez M, Anel L, de Paz P (2010) Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 45(Suppl 2):67–78. doi:10.1111/j.1439-0531.2010.01622.x

    Article  Google Scholar 

  67. Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79:405–425. doi:10.1002/cyto.a.21061

    Article  Google Scholar 

  68. Liegibel UM, Abrahamse SL, Pool-Zobel BL, Rechkemmer G (2000) Application of confocal laser scanning microscopy to detect oxidative stress in human colon cells. Free Radic Res 32:535–547 PubMed PMID: 10798719

    Article  Google Scholar 

  69. Manshian BB, Abdelmonem AM, Kantner K, Pelaz B, Klapper M, Nardi Tironi C, Parak WJ, Himmelreich U, Soenen SJ (2016) Evaluation of quantum dot cytotoxicity: interpretation of nanoparticle concentrations versus intracellular nanoparticle numbers. Nanotoxicology 10:1318–1328. doi:10.1080/17435390.2016.1210691

    Article  Google Scholar 

  70. Ploppa A, George TC, Unertl KE, Nohe B, Durieux ME (2011) ImageStream cytometry extends the analysis of phagocytosis and oxidative burst. Scand J Clin Lab Invest 71:362–369. doi:10.3109/00365513.2011.572182

    Article  Google Scholar 

  71. Moktar A, Singh R, Vadhanam MV, Ravoori S, Lillard JW, Gairola CG, Gupta RC (2011) Cigarette smoke condensate-induced oxidative DNA damage and its removal in human cervical cancer cells. Int J Oncol 39:941–947. doi:10.3892/ijo.2011.1106

    Google Scholar 

  72. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 1:1–5 PMID: 14328641

    Article  Google Scholar 

  73. van Eeden SF, Klut ME, Walker BA, Hogg JC (1999) The use of flow cytometry to measure neutrophil function. J Immunol Methods 232:23–43 PMID: 10618507

    Article  Google Scholar 

  74. Caldefie-Chézet F, Walrand S, Moinard C, Tridon A, Chassagne J, Vasson MP (2002) Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clin Chim Acta 319:9–17 PMID: 11922918

    Article  Google Scholar 

  75. Bourré L, Thibaut S, Briffaud A, Rousset N, Eléouet S, Lajat Y, Patrice T (2002) Indirect detection of photosensitizer ex vivo. J Photochem Photobiol, B Biol 67:23–31 PMID: 12007464

    Article  Google Scholar 

  76. Silveira LR, Pereira-da-Silva L, Juel C, Hellstein Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464 PMID: 12927595

    Article  Google Scholar 

  77. Tampo Y, Kotamraju S, Chitambar CR, Kalivendi SV, Keszler A, Joseph J, Kalyanaraman B (2003) Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells: role of transferrin receptor-dependent iron uptake in apoptosis. Circ Res 92:56–63 [PubMed: 12522121]

    Article  Google Scholar 

  78. Kotamraju S, Tampo Y, Keszler A, Chitambar CR, Joseph J, Haas AL, Kalyanaraman B (2003) Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: role of ubiquitin–proteasome pathway. Proc Natl Acad Sci U S A. 100:10653–10658 PMID: 12522121

    Article  Google Scholar 

  79. Kotamraju S, Kalivendi SV, Konorev E, Chitambar CR, Joseph J (2004) Kalyanaraman B (2004) Oxidant induced iron signaling in doxorubicin-mediated apoptosis. Methods Enzymol 378:362–382. doi:10.1016/S0076-6879(04)78026-X

    Article  Google Scholar 

  80. https://www.thermofisher.com/it/en/home/references/molecular-probes-the-handbook/probes-for-reactive-oxygen-species-including-nitric-oxide.html

  81. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157. doi:10.1006/niox.1996.0113

    Article  Google Scholar 

  82. Miller EW, Abers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659. doi:10.1021/ja054474f

    Article  Google Scholar 

  83. Dickenson BC, Huynh C, Chang CJ (2010) A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J Am Chem Soc 132:5906–5915. doi:10.1021/ja1014103

    Article  Google Scholar 

  84. Guo H, Aleyasin H, Dickinson BC, Haskew-Layton RE, Ratan RR (2014) Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci 4:64. doi:10.1186/2045-3701-4-64

    Article  Google Scholar 

  85. Guo HC, Aleyasin H, Howard SS, Dickinson BC, Lin VS, Haskew-Layton RE, Xu C, Chen Y, Ratan RR (2013) Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes. J Biomed Opt 18:106002. doi:10.1117/1.JBO.18.10.106002

    Article  Google Scholar 

  86. Albers AE, Okreglak VS, Chang CJ (2006) A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 128:9640–9641. doi:10.1021/ja063308k

    Article  Google Scholar 

  87. Han Z, Liang X, Ren X, Shang L, Yin Z (2016) A 3,7-dihydroxyphenoxazine-based fluorescent probe for selective detection of intracellular hydrogen peroxide. Chem Asian J 11:818–822. doi:10.1002/asia.201501304

    Article  Google Scholar 

  88. Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639. doi:10.1021/ja802355u

    Article  Google Scholar 

  89. Xu J, Zhang Y, Yu H, Gao X, Shao S (2016) Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal Chem 88:1455–1461. doi:10.1021/acs.analchem.5b04424

    Article  Google Scholar 

  90. Dickinson BC, Tang Y, Chang ZY, Chang CJ (2011) A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem Biol 18:943–948. doi:10.1016/j.chembiol.2011.07.005

    Article  Google Scholar 

  91. Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831 PMID: 9823548

    Article  Google Scholar 

  92. Rothe G, Valet G (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2,7-dichlorofluorescin. J Leukoc Biol 47:440–448 PMID: 2159514

    Google Scholar 

  93. Walrand S, Valeix S, Rodriguez C, Ligot P, Chassagne J, Vasson MP (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331:103–110 PMID: 12691870

    Article  Google Scholar 

  94. Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55:253–258 PMID: 8301222

    Google Scholar 

  95. Barbacanne MA, Souchard JP, Darblade B, Iliou JP, Nepveu F, Pipy B, Bayard F, Arnal JF (2000) Detection of superoxide anion released extracellularly by endothelial cells using cytochrome c reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques. Free Radic Biol Med 29:388–396 PMID: 11020659

    Article  Google Scholar 

  96. Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22:1761–1768 PMID: 12426202

    Article  Google Scholar 

  97. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–444. doi:10.1152/ajpregu.00361.2003

    Article  Google Scholar 

  98. Guo TL, Miller MA, Shapiro IM, Shenker BJ (1998) Mercuric chloride induces apoptosis in human T lymphocytes: evidence of mitochondrial dysfunction. Toxicol Appl Pharmacol 153:250–257. doi:10.1006/taap.1998.8549

    Article  Google Scholar 

  99. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM, Lemasters JJ, Holmuhamedov EL, Kaufmann SH (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282:8860–8872. doi:10.1074/jbc.M611777200

    Article  Google Scholar 

  100. De Biasi S, Gibellini L, Bianchini E, Nasi M, Pinti M, Salvioli S, Cossarizza A (2016) Quantification of mitochondrial reactive oxygen species in living cells by using multi-laser polychromatic flow cytometry. Cytometry A 89:1106–1110. doi:10.1002/cyto.a.22936

    Article  Google Scholar 

  101. Robinson KM, Janes MS, Beckman JS (2008) The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc 3:941–947. doi:10.1038/nprot.2008.56

    Article  Google Scholar 

  102. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001. doi:10.1016/j.freeradbiomed.2010.01.028

    Article  Google Scholar 

  103. Ahn HY, Fairfull-Smith KE, Morrow BJ, Lussini V, Kim B, Bondar MV, Bottle SE, Belfield KD (2012) Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides. J Am Chem Soc 134:4721–4730. doi:10.1021/ja210315x

    Article  Google Scholar 

  104. DeLoughery Z, Luczak MW, Zhitkovich A (2014) Monitoring Cr intermediates and reactive oxygen species with fluorescent probes during chromate reduction. Chem Res Toxicol 27:843–851. doi:10.1021/tx500028x

    Article  Google Scholar 

  105. Plaza Davila M, Martin Muñoz P, Tapia JA, Ortega Ferrusola C, Balao da Silva CC, Peña FJ (2015) Inhibition of mitochondrial complex i leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS One 10(9):e0138777. doi:10.1371/journal.pone.0138777

    Article  Google Scholar 

  106. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull (Tokyo) 46:373–375 PMID: 9501473

    Article  Google Scholar 

  107. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453 PMID: 9666719

    Article  Google Scholar 

  108. Leikert JF, Räthel TR, Müller C, Vollmar AM, Dirsch VM (2001) Reliable in vitro measurement of nitric oxide released from endothelial cells using low concentrations of the fluorescent probe 4,5-diaminofluorescein. FEBS Lett 506:131–134 PMID: 11591386

    Article  Google Scholar 

  109. Xian JA, Guo H, Li B, Miao YT, Ye JM, Zhang SP, Pan XB, Ye CX, Wang AL, Hao XM (2013) Measurement of intracellular nitric oxide (NO) production in shrimp haemocytes by flow cytometry. Fish Shellfish Immunol 35:2032–2039. doi:10.1016/j.fsi.2013.10.014

    Article  Google Scholar 

  110. Kolpen M, Bjarnsholt T, Moser C, Hansen CR, Rickelt LF, Kühl M, Hempel C, Pressler T, Høiby N, Jensen PØ (2014) Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin Exp Immunol 177:310–319. doi:10.1111/cei.12318

    Article  Google Scholar 

  111. Balaguer S, Diaz L, Gomes A, Herrera G, O’Connor JE, Urios A, Felipo V, Montoliu C (2015) Real-time cytometric assay of nitric oxide and superoxide interaction in peripheral blood monocytes: a no-wash, no-lyse kinetic method. Cytometry B Clin Cytom. doi:10.1002/cyto.b.21237. (Epub ahead of print)

  112. Wardman P (2008) Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines. Methods Enzymol 441:261–282. doi:10.1016/S0076-6879(08)01214-7

    Article  Google Scholar 

  113. Kuypers FA, van den Berg JJ, Schalkwijk C, Roelofsen B, Op den Kamp JA (1987) Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta 921:266–274 PMID: 3651488

    Article  Google Scholar 

  114. Hedley D, Chow S (1992) Flow cytometric measurement of lipid peroxidation in vital cells using parinaric acid. Cytometry A 13:686–692. doi:10.1002/cyto.990130704

    Article  Google Scholar 

  115. Drummen GP, Makkinje M, Verkleij AJ, Op den Kamp JA, Post JA (2004) Attenuation of lipid peroxidation by antioxidants in rat-1 fibroblasts: comparison of the lipid peroxidation reporter molecules cis-parinaric acid and C11-BODIPY(581/591) in a biological setting. Biochim Biophys Acta 1636:136–150 PMID: 15164761

    Article  Google Scholar 

  116. Yoshida Y, Shimakawa S, Itoh N, Niki E (2003) Action of DCFH and BODIPY as a probe for radical oxidation in hydrophilic and lipophilic domain. Free Radic Res 37:861–872 PMID: 14567446

    Article  Google Scholar 

  117. Brouwers JF, Gadella BM (2003) In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic Biol Med 35:1382–1391 PMID: 14642386

    Article  Google Scholar 

  118. Cheloni G, Slaveykova VI (2013) Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry. Cytometry A 83:952–961. doi:10.1002/cyto.a.22338

    Google Scholar 

  119. Peluso I, Adorno G, Raguzzini A, Urban L, Ghiselli A, Serafini M (2013) A new flow cytometry method to measure oxidative status: the Peroxidation of Leukocytes Index Ratio (PLIR). J Immunol Methods 390:113–120. doi:10.1016/j.jim.2013.02.005

    Article  Google Scholar 

  120. Donato MT, Martínez-Romero A, Jiménez N, Negro A, Herrera G, Castell JV, O’Connor JE, Gómez-Lechón MJ (2009) Cytometric analysis for drug-induced steatosis in HepG2 cells. Chem Biol Interact 181:417–423. doi:10.1016/j.cbi.2009.07.019

    Article  Google Scholar 

  121. Makrigiorgos GM, Kassis AI, Mahmood A, Bump EA, Savvides P (1997) Novel fluorescein-based flow–cytometric method for detection of lipid peroxidation. Free Radic Biol Med 22:93–100 PMID: 8958133

    Article  Google Scholar 

  122. Maulik G, Kassis AI, Savvides P, Makrigiorgos GM (1998) Fluoresceinated phosphoethanolamine for flow–cytometric measurement of lipid peroxidation. Free Radic Biol Med 26:645–653 PMID: 9801063

    Article  Google Scholar 

  123. Lee SH, Blair IA (2000) Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem Res Toxicol 13:698–702 PMID: 10956056

    Article  Google Scholar 

  124. Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P, Bánhegyi G (2015) On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta 1852:826–838. doi:10.1016/j.bbadis.2015.01.015

    Article  Google Scholar 

  125. Toyokuni S, Miyake N, Hiai H, Hagiwara M, Kawakishi S, Osawa T, Uchida K (1995) The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 359:189–191 PMID: 7867796

    Article  Google Scholar 

  126. Martin Muñoz P, Ortega Ferrusola C, Vizuete G, Plaza Dávila M, Rodriguez Martinez H, Peña FJ (2015) Depletion of intracellular thiols and increased production of 4-hydroxynonenal that occur during cryopreservation of stallion spermatozoa lead to caspase activation, loss of motility, and cell death. Biol Reprod 93:143. doi:10.1095/biolreprod.115.132878

    Google Scholar 

  127. https://www.emdmillipore.com/US/en/product/OxyDNA-Assay-Kit,-Fluorometric, EMD_BIO-500095

  128. Nagy S, Kakasi B, Bercsényi M (2016) Flow cytometric detection of oxidative DNA damage in fish spermatozoa exposed to cadmium—short communication. Acta Vet Hung 64:120–124. doi:10.1556/004.2016.013

    Article  Google Scholar 

  129. Esperanza M, Cid Á, Herrero C, Rioboo C (2015) Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: screening cytotoxicity and genotoxicity endpoints. Aquat Toxicol 165:210–221. doi:10.1016/j.aquatox.2015.06.004

    Article  Google Scholar 

  130. Zribi N, Feki Chakroun N, El Euch H, Gargouri J, Bahloul A, Ammar Keskes L (2010) Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril 93:159–166. doi:10.1016/j.fertnstert.2008.09.038

    Article  Google Scholar 

  131. Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, Baldi E, Muratori M (2013) Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction 145:227–235. doi:10.1530/REP-12-0404

    Article  Google Scholar 

  132. Aguilar C, Meseguer M, García-Herrero S, Gil-Salom M, O’Connor JE, Garrido N (2010) Relevance of testicular sperm DNA oxidation for the outcome of ovum donation cycles. Fertil Steril 94:979–988. doi:10.1016/j.fertnstert.2009.05.015

    Article  Google Scholar 

  133. Meseguer M, Martínez-Conejero JA, O’Connor JE, Pellicer A, Remohí J, Garrido N (2008) The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril 89:1191–1199. doi:10.1016/j.fertnstert.2007.05.005

    Article  Google Scholar 

  134. Balao da Silva CM, Ortega-Ferrusola C, Morrell JM, Rodriguez Martínez H, Peña FJ (2016) Flow cytometric chromosomal sex sorting of stallion spermatozoa induces oxidative stress on mitochondria and genomic DNA. Reprod Domest Anim 51:18–25. doi:10.1111/rda.12640

    Article  Google Scholar 

  135. Durand RE, Olive PL (1983) Flow cytometry techniques for studying cellular thiols. Radiat Res 95:456–470 PubMed PMID: 6193555

    Article  Google Scholar 

  136. Treumer J, Valet G (1986) Flow-cytometric determination of glutathione alterations in vital cells by o-phthaldialdehyde (OPT) staining. Exp Cell Res 163:518–524 PMID: 2420623

    Article  Google Scholar 

  137. O’Connor JE, Kimler BF, Morgan MC, Tempas KJ (1988) A flow cytometric assay for intracellular nonprotein thiols using mercury orange. Cytometry A 9:529–532 PMID: 3208619

    Article  Google Scholar 

  138. http://www.thermofisher.com/it/en/home/references/molecular-probes-the-handbook/assays-for-cell-viability-proliferation-and-function/probes-for-cell-adhesion-chemotaxis-multidrug-resistance-and-glutathione.html#head5

  139. Nair S, Singh SV, Krishan A (1991) Flow cytometric monitoring of glutathione content and anthracycline retention in tumor cells. Cytometry A 12:336–342. doi:10.1002/cyto.990120408

    Article  Google Scholar 

  140. Hedley DW, Chow S (1994) Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry A 15:349–358. doi:10.1002/cyto.990150411

    Article  Google Scholar 

  141. Chow S, Hedley D (1995) Flow cytometric determination of glutathione in clinical samples. Cytometry 21:68–71. doi:10.1002/cyto.990210113

    Article  Google Scholar 

  142. Skindersoe ME, Kjaerulff S (2014) Comparison of three thiol probes for determination of apoptosis-related changes in cellular redox status. Cytometry A 85:179–187. doi:10.1002/cyto.a.22410

    Article  Google Scholar 

  143. O’Connor JE, Herrera G, Corrochano V (1998) Flow versus flux: functional assays by flow cytometry. In: Slavík J (ed) Fluorescence and Fluorescent Probes II. Plenum Press, New York, pp 47–54

    Google Scholar 

  144. O’Connor JE, Callaghan RC, Escudero M, Herrera G, Martínez A, Monteiro MD, Montolíu H (2001) The relevance of flow cytometry for biochemical analysis. IUBMB Life 51:231–239. doi:10.1080/152165401753311771

    Article  Google Scholar 

  145. Grzelak A, Rychlik B, Bartosz G (2000) Reactive oxygen species are formed in cell culture media. Acta Biochim Pol 47:1197–1198 PMID: 11996110

    Google Scholar 

  146. Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325:516–518

    Article  Google Scholar 

  147. Van Baalen C, Marler JE (1966) Occurrence of hydrogen peroxide in sea water. Nature 211:951

    Article  Google Scholar 

  148. Subramaniam R, Fan XJ, Scivittaro V, Yang J, Ha CE, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM (2002) Cellular oxidant stress and advanced glycation endproducts of albumin: caveats of the dichlorofluorescein assay. Arch Biochem Biophys 400:15–25. doi:10.1006/abbi.2002.2776

    Article  Google Scholar 

  149. Keller A, Mohamed A, Drose S, Brandt U, Fleming I, Brandes RP (2004) Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic Res 38:1257–1267. doi:10.1080/10715760400022145

    Article  Google Scholar 

  150. Swift LM, Sarvazyan N (2000) Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress. Am J Physiol Heart Circ Physiol 278:H982–990 PMID: 10710368

    Google Scholar 

  151. Jakubowski W, Bartosz G (1997) Estimation of oxidative stress in Saccharomyces cerevisae with fluorescent probes. Int J Biochem Cell Biol 29:1297–1301 PMID: 9451827

    Article  Google Scholar 

  152. Saengkhae C, Loetchutinat C, Garnier-Suillerot A (2003) Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem Pharmacol 65:969–977 PMID: 12623128

    Article  Google Scholar 

  153. Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16:149–156 PMID: 8005510

    Article  Google Scholar 

  154. Kooy NW, Royall JA, Ischiropoulos H (1997) Oxidation of 2,7-dichlorofluorescin by peroxynitrite. Free Radic Res 27:245–254 PMID: 9350429

    Article  Google Scholar 

  155. Chignell CF, Sik RH (2003) A photochemical study of cells loaded with 2,7-dichlorofluorescin: implications for the detection of reactive oxygen species generated during UVA irradiation. Free Radic Biol Med 34:1029–1034 PMID: 12684087

    Article  Google Scholar 

  156. Sikora A, Zielonka J, Lopez M, Joseph J, Kalyanaraman B (2009) Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic Biol Med 47:1401–1407. doi:10.1016/j.freeradbiomed.2009.08.006

    Article  Google Scholar 

  157. Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vásquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368 PMID: 12757846

    Article  Google Scholar 

  158. Zhao H, Joseph J, Fales HM, Sokoloski EA, Levine RL, Vasquez-Vivar J, Kalyanaraman B (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102:5727–5732. doi:10.1073/pnas.0501719102

    Article  Google Scholar 

  159. Papapostolou I, Patsoukis N, Georgiou CD (2004) The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Anal Biochem 332:290–298. doi:10.1016/j.ab.2004.06.022

    Article  Google Scholar 

  160. Roychowdhury S, Luthe A, Keilhoff G, Wolf G, Horn TF (2002) Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide. Glia 38:103–114 PMID: 11948804

    Article  Google Scholar 

  161. Jourd’heuil D (2002) Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. Free Radic Biol Med 33:676–684 PMID: 12208354

    Article  Google Scholar 

  162. Nagata N, Momose K, Ishida Y (1999) Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J Biochem 125:658–661 PMID: 10101276

    Article  Google Scholar 

  163. Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV (2002) Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 277:48472–48478. doi:10.1074/jbc.M209130200

    Article  Google Scholar 

  164. Qian SY, Buettner GR (1999) Iron and dioxygen chemistry is an important route to initiation of biological and free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 26:1447–1456 PMID: 10401608

    Article  Google Scholar 

  165. Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA (2002) C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33:473–490 PMID: 12160930

    Article  Google Scholar 

  166. van der Ven AJ, Mier P, Peters WH, Dolstra H, van Erp PE, Koopmans PP, van der Meer JW (1994) Monochlorobimane does not selectively label glutathione in peripheral blood mononuclear cells. Anal Biochem 217:41–47 PMID:7515598

    Article  Google Scholar 

  167. Nimse SB, Palb D (2015) Free radicals, natural antioxidants, and their reaction mechanisms RSC Adv 5: 27986–28006

    Google Scholar 

  168. Aitken RJ, Buckingham D, Harkiss D (1993) Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 97:441–450 PMID: 8388958

    Article  Google Scholar 

  169. Alexandre J, Nicco C, Chéreau C, Laurent A, Weill B, Goldwasser F, Batteux F (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98:236–244. doi:10.1093/jnci/djj049

    Article  Google Scholar 

  170. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD (2016) Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8:E236. doi:10.3390/toxins8080236

    Article  Google Scholar 

  171. Harris C, Hansen JM (2012) Oxidative stress, thiols, and redox profiles. Methods Mol Biol 889:325–346. doi:10.1007/978-1-61779-867-2_21

    Article  Google Scholar 

  172. Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, Sawyer DB, Colucci WS (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85:147–153 PMID: 10417396

    Article  Google Scholar 

  173. Titov VY, Osipov AN (2016) Nitrite and nitroso compounds can serve as specific catalase inhibitors. Redox Rep Apr 14:1–7. (Epub ahead of print) PMID: 27075937

    Google Scholar 

  174. Serafim RA, Primi MC, Trossini GH, Ferreira EI (2012) Nitric oxide: state of the art in drug design. Curr Med Chem 19:386–405 PMID: 22335514

    Article  Google Scholar 

  175. Yuan S, Patel RP, Kevil CG (2015) Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 308:L403–415. doi:10.1152/ajplung.00327.2014

    Article  Google Scholar 

  176. Khodade VS, Kulkarni A, Sen Gupta A, Sengupta K, Chakrapani H (2016) A small molecule for controlled generation of peroxynitrite. Org Lett 18:1274–1277. doi:10.1021/acs.orglett.6b00186

    Article  Google Scholar 

  177. Kim EJ, Lee HJ, Lee J, Youm HW, Lee JR, Suh CS, Kim SH (2015) The beneficial effects of polyethylene glycol-superoxide dismutase on ovarian tissue culture and transplantation. J Assist Reprod Genet 32:1561–1569. doi:10.1007/s10815-015-0537-8

    Article  Google Scholar 

  178. Hrušková K, Potůčková E, Hergeselová T, Liptáková L, Hašková P, Mingas P, Kovaříková P, Šimůnek T, Vávrová K (2016) Aroylhydrazone iron chelators: tuning antioxidant and antiproliferative properties by hydrazide modifications. Eur J Med Chem 120:97–110. doi:10.1016/j.ejmech.2016.05.015

    Article  Google Scholar 

  179. Herrera G, Martínez A, O’Connor JE, Blanco M (2003) UNIT 11.16 Functional assays of oxidative stress using genetically engineered Escherichia coli strains. Current Protocols Cytometry Published Online: 1 May 2003. doi:10.1002/0471142956.cy1116s24

  180. Herrera G, Martinez A, Blanco M, O’Connor JE (2002) Assessment of Escherichia coli B with enhanced permeability to fluorochromes for flow cytometric assays of bacterial cell function. Cytometry A 49:62–69. doi:10.1002/cyto.10148

    Article  Google Scholar 

  181. Alvarez-Barrientos A, O’Connor JE, Nieto-Castillo R, Moreno-Moreno AB, Prieto P (2001) Use of flow cytometry and confocal microscopy techniques to investigate early CdCl2-induced nephrotoxicity in vitro. Toxicol In Vitro 15:407–412. doi:10.1016/S0887-2333(01)00044-3

    Article  Google Scholar 

  182. Pinti M, Gibellini L, De Biasi S, Nasi M, Roat E, O’Connor JE, Cossarizza A (2011) Functional characterization of the promoter of the human Lon protease gene. Mitochondrion 11:200–206. doi:10.1016/j.mito.2010.09.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the University of Valencia (UVEG) through grants UV-INV-AE15-349700 (Convocatòria Accions Especials 2015) and MOGDETECT (Programa VLC-BIOMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Enrique O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

O’Connor, JE., Herrera, G., Sala-de-Oyanguren, F., Jávega, B., Martínez-Romero, A. (2017). Cytomics of Oxidative Stress: Probes and Problems. In: Robinson, J., Cossarizza, A. (eds) Single Cell Analysis. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-4499-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4499-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4498-4

  • Online ISBN: 978-981-10-4499-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics