Skip to main content

Sperm Chromatin Compaction and Male Infertility

  • Chapter
  • First Online:
Male Infertility: Understanding, Causes and Treatment

Abstract

Nucleosome, the fundamental unit of chromatin, is histone octamer composed of dimers of each histone H2A, H2B, H3, and H4. Histones are the key epigenetic players and regulate chromatin architecture. During later stages of spermatogenesis, extensive remodeling of chromatin takes place in which somatic histones get replaced by testis-specific histones, which in turn get replaced by transition proteins and finally by protamines. Disturbances that impair this highly orchestrated process may result in loose DNA packing, endangering its integrity. This reflects on sperm morphology and motility, resulting in teratozoospermia and asthenozoospermia and consequently infertility. These sperm are unable to reach the oocyte and, if they do, fail to fertilize. Assisted fertilization in the form of IVF or ICSI may help overcome this hindrance; however, the risk of failure at early embryonic developmental stages or preimplantation loss increases dramatically. This review provides an update on our current understanding of the role of sperm chromatin compaction in sperm function and the impact of its failure on male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akama K, Sato H, Furihata-Yamauchi M, Komatsu Y, Tobita T, Nakano M (1996) Interaction of nucleosome core DNA with transition proteins 1 and 3 from boar late spermatid nuclei. J Biochem 119:448–455

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Liu L, Carrell DT (2005a) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT (2005b) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741–748

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW, Emery BR, Liu L, Carrell DT (2006) Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 27:890–898

    Article  CAS  PubMed  Google Scholar 

  • Awe S, Renkawitz-Pohl R (2010) Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 56:44–61

    Article  CAS  PubMed  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55

    Article  CAS  PubMed  Google Scholar 

  • Belokopytova IA, Kostyleva EI, Tomilin AN, Vorob’ev VI (1993) Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev 34:53–57

    Article  CAS  PubMed  Google Scholar 

  • Belva F, Henriet S, Liebaers I, Van Steirteghem A, Celestin-Westreich S, Bonduelle M (2007) Medical outcome of 8-year-old singleton ICSI children (born >or =32 weeks’ gestation) and a spontaneously conceived comparison group. Hum Reprod 22:506–515

    Article  CAS  PubMed  Google Scholar 

  • Bonduelle M, Bergh C, Niklasson A, Palermo GD, Wennerholm UB (2004) Medical follow-up study of 5-year-old ICSI children. Reprod Biomed Online 9:91–101

    Article  PubMed  Google Scholar 

  • Brunner AM, Nanni P, Mansuy IM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  CAS  PubMed  Google Scholar 

  • Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610

    CAS  PubMed  Google Scholar 

  • Carrell DT, Emery BR, Liu L (1999) Characterization of aneuploidy rates, protamine levels, ultrastructure, and functional ability of round-headed sperm from two siblings and implications for intracytoplasmic sperm injection. Fertil Steril 71:511–516

    Article  CAS  PubMed  Google Scholar 

  • Catena R, Ronfani L, Sassone-Corsi P, Davidson I (2006) Changes in intranuclear chromatin architecture induce bipolar nuclear localization of histone variant H1T2 in male haploid spermatids. Dev Biol 296:231–238

    Article  CAS  PubMed  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevaillier P, Chirat F, Sautiere P (1998) The amino acid sequence of the ram spermatidal protein 3--a transition protein TP3 or TP4? Eur J biochem 258:460–464

    Article  CAS  PubMed  Google Scholar 

  • Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69:211–217

    Article  CAS  PubMed  Google Scholar 

  • De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod 81:517–524

    Article  CAS  PubMed  Google Scholar 

  • de la Barre AE, Angelov D, Molla A, Dimitrov S (2001) The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J 20:6383–6393

    Article  PubMed  PubMed Central  Google Scholar 

  • de Mateo S, Gazquez C, Guimera M, Balasch J, Meistrich ML, Ballesca JL, Oliva R (2009) Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril 91:715–722

    Article  PubMed  CAS  Google Scholar 

  • de Yebra L, Ballesca JL, Vanrell JA, Bassas L, Oliva R (1993) Complete selective absence of protamine P2 in humans. J Biol Chem 268:10553–10557

    PubMed  Google Scholar 

  • de Yebra L, Ballesca JL, Vanrell JA, Corzett M, Balhorn R, Oliva R (1998) Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril 69:755–759

    Article  PubMed  Google Scholar 

  • Drabent B, Bode C, Bramlage B, Doenecke D (1996) Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem Cell Biol 106:247–251

    Article  CAS  PubMed  Google Scholar 

  • Drabent B, Benavente R, Hoyer-Fender S (2003) Histone H1t is not replaced by H1.1 or H1.2 in pachytene spermatocytes or spermatids of H1t-deficient mice. Cytogenet Genome Res 103:307–313

    CAS  PubMed  Google Scholar 

  • Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Franken DR, Franken CJ, De La Guerre H, De Villiers A (1999) Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia 31:361–366

    Article  CAS  PubMed  Google Scholar 

  • García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ, Navarro J, Jones C, Coward K, Gosálvez J, Benet J (2011) Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril 95:105–109

    Article  PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    Article  CAS  PubMed  Google Scholar 

  • Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K et al (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimes SR Jr, Platz RD, Meistrich ML, Hnilica LS (1975) Partial characterization of a new basic nuclear protein from rat testis elongated spermatids. Biochem Biophys Res Commun 67:182–189

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT (2011) Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 26:2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidaran MA, Showman RM, Kistler WS (1988) A cytochemical study of the transcriptional and translational regulation of nuclear transition protein 1 (TP1), a major chromosomal protein of mammalian spermatids. J Cell Biol 106:1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Ichijima Y, Sin HS, Namekawa SH (2012) Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. Cell Mol Life Sci 69:2559–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchi N, Tanaka H, Yomogida K, Nishimune Y (2003) Isolation and characterization of a novel cDNA encoding a DNA-binding protein (Hils1) specifically expressed in testicular haploid germ cells. Int J Androl 26:354–365

    Article  CAS  PubMed  Google Scholar 

  • Iguchi N, Tanaka H, Yamada S, Nishimura H, Nishimune Y (2004) Control of mouse hils1 gene expression during spermatogenesis: identification of regulatory element by transgenic mouse. Biol Reprod 70:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Ioannou D, Miller D, Griffin DK, Tempest HG (2016) Impact of sperm DNA chromatin in the clinic. J Assist Reprod Genet 33:157–166

    Article  PubMed  Google Scholar 

  • Iranpour FG (2014) Impact of sperm chromatin evaluation on fertilization rate in intracytoplasmic sperm injection. Adv Biomed Res 3:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Irez T, Sahmay S, Ocal P, Goymen A, Senol H, Erol N, Kaleli S, Guralp O (2015) Investigation of the association between the outcomes of sperm chromatin condensation and decondensation tests, and assisted reproduction techniques. Andrologia 47:438–447

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Pan C, Fei Q, Ni W, Yang X, Zhang L, Huang X (2015) Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserves. Fertil Steril 103:910–916

    Article  CAS  PubMed  Google Scholar 

  • Khara KK, Vlad M, Griffiths M, Kennedy CR (1997) Human protamines and male infertility. J Assist Reprod Genet 14:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler WS, Geroch ME, Williams-Ashman HG (1975) A highly basic small protein associated with spermatogenesis in the human testis. Investig Urol 12:346–350

    CAS  Google Scholar 

  • Krejci J, Stixova L, Pagacova E, Legartova S, Kozubek S, Lochmanova G, Zdrahal Z, Sehnalova P, Dabravolski S, Hejatko J et al (2015) Post-translational modifications of histones in human sperm. J Cell Biochem 116:2195–2209

    Article  CAS  PubMed  Google Scholar 

  • Kremling H, Luerssen H, Adham IM, Klemm U, Tsaousidou S, Engel W (1989) Nucleotide sequences and expression of cDNA clones for boar and bull transition protein 1 and its evolutionary conservation in mammals. Differentiation 40:184–190

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Park HS, Kim HH, Yun YJ, Lee DR, Lee S (2009) Functional polymorphism in H2BFWT-5′UTR is associated with susceptibility to male infertility. J Cell Mol Med 13:1942–1951

    Article  PubMed  Google Scholar 

  • Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA (2014) Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 5:3812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Xie YM, Li X, Luo J, Shi XQ, Hong X, Pan YH, Ma X (2009) Mass spectrometry analysis of dynamic post-translational modifications of TH2B during spermatogenesis. Mol Hum Reprod 15:373–378

    Article  CAS  PubMed  Google Scholar 

  • Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL (2016) Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Manochantr S, Chiamchanya C, Sobhon P (2012) Relationship between chromatin condensation, DNA integrity and quality of ejaculated spermatozoa from infertile men. Andrologia 44:187–199

    Article  CAS  PubMed  Google Scholar 

  • Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis:new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70:910–918

    Article  CAS  PubMed  Google Scholar 

  • Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci U S A 102:2808–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA (2012) National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 9:e1001356

    Article  PubMed  PubMed Central  Google Scholar 

  • Meetei AR, Ullas KS, Rao MR (2000) Identification of two novel zinc finger modules and nuclear localization signal in rat spermatidal protein TP2 by site-directed mutagenesis. J Biol Chem 275:38500–38507

    Article  CAS  PubMed  Google Scholar 

  • Mengual L, Ballesca JL, Ascaso C, Oliva R (2003) Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl 24:438–447

    Article  PubMed  Google Scholar 

  • Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Hery P, Curtet S et al (2013) Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27:1680–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriniere J, Rousseaux S, Steuerwald U, Soler-Lopez M, Curtet S, Vitte AL, Govin J, Gaucher J, Sadoul K, Hart DJ et al (2009) Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461:664–668

    Article  CAS  PubMed  Google Scholar 

  • Morris ID, Ilott S, Dixon L, Brison DR (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17:990–998

    Article  CAS  PubMed  Google Scholar 

  • Mylonis I, Drosou V, Brancorsini S, Nikolakaki E, Sassone-Corsi P, Giannakouros T (2004) Temporal association of protamine 1 with the inner nuclear membrane protein lamin B receptor during spermiogenesis. J Biol Chem 279:11626–11631

    Article  CAS  PubMed  Google Scholar 

  • Nasr-Esfahani MH, Salehi M, Razavi S, Mardani M, Bahramian H, Steger K, Oreizi F (2004) Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online 9:652–658

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov M, Soboleva TA, Jack C, Tremethick DJ (2013) Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1. Nucleus 4:431–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni K, Steger K, Yang H, Wang H, Hu K, Chen B (2014a) Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol 192:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Xiao S, Qiu X, Jin J, Pan C, Li Y, Fei Q, Yang X, Zhang L, Huang X (2014b) Effect of sperm DNA fragmentation on clinical outcome of frozen-thawed embryo transfer and on blastocyst formation. PLoS One 9:e94956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nili HA, Mozdarani H, Aleyasin A (2009) Correlation of sperm DNA damage with protamine deficiency in Iranian subfertile men. Reprod Biomed Online 18:479–485

    Article  PubMed  Google Scholar 

  • Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123

    Article  CAS  PubMed  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C, Dixon GH (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    CAS  PubMed  Google Scholar 

  • Padavattan S, Shinagawa T, Hasegawa K, Kumasaka T, Ishii S, Kumarevel T (2015) Structural and functional analyses of nucleosome complexes with mouse histone variants TH2a and TH2b, involved in reprogramming. Biochem Biophys Res Commun 464:929–935

    Article  CAS  PubMed  Google Scholar 

  • Parte PP, Rao P, Redij S, Lobo V, D'Souza SJ, Gajbhiye R, Kulkarni V (2012) Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J Proteome 75:5861–5871

    Article  CAS  Google Scholar 

  • Pentakota SK, Sandhya SP, Sikarwar A, Chandra N, Satyanarayana Rao MR (2014) Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure. J Proteome Res 13:5603–5617

    Article  CAS  PubMed  Google Scholar 

  • Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S (2003) Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23:5354–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradeepa MM, Rao MR (2007) Chromatin remodeling during mammalian spermatogenesis: role of testis specific histone variants and transition proteins. Soc Reprod Fertil Suppl 63:1–10

    CAS  PubMed  Google Scholar 

  • Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839:155–168

    Article  CAS  PubMed  Google Scholar 

  • Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M (2010) Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia 42:13–19

    Article  CAS  PubMed  Google Scholar 

  • Reeves RH, Gearhart JD, Hecht NB, Yelick P, Johnson P, O'Brien SJ (1989) Mapping of PRM1 to human chromosome 16 and tight linkage of Prm-1 and Prm-2 on mouse chromosome 16. J Hered 80:442–446

    Article  CAS  PubMed  Google Scholar 

  • Rilcheva Violeta S, Ayvazova Nina P, Ilieva Lyubomira O, Ivanova Svetlana P, Konova EI (2016) Sperm DNA integrity test and assisted reproductive technology (art) outcome. J Biomed Clin Res 9(1):21–29

    Google Scholar 

  • Rogenhofer N, Dansranjavin T, Schorsch M, Spiess A, Wang H, von Schonfeldt V, Cappallo-Obermann H, Baukloh V, Yang H, Paradowska A et al (2013) The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum Reprod 28:969–978

    Article  CAS  PubMed  Google Scholar 

  • Savadi-Shiraz E, Edalatkhah H, Talebi S, Heidari-Vala H, Zandemami M, Pahlavan S, Modarressi MH, Akhondi MM, Paradowska-Dogan A, Sadeghi MR (2015) Quantification of sperm specific mRNA transcripts (PRM1, PRM2, and TNP2) in teratozoospermia and normozoospermia: new correlations between mRNA content and morphology of sperm. Mol Reprod Dev 82:26–35

    Article  CAS  PubMed  Google Scholar 

  • Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120:275–285

    Article  CAS  PubMed  Google Scholar 

  • Schon SB, Luense LJ, Wang X, Donahue G, Garcia BA, Bartolomei MS, Berger SL (2015) A comprehensive assessment of histone modifications in human sperm. Fertil Steril 104:e296–e2e7

    Article  Google Scholar 

  • Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y et al (2014) Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14:217–227

    Article  CAS  PubMed  Google Scholar 

  • Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S (2015) Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 142:1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M et al (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350:aab2006

    Article  PubMed  CAS  Google Scholar 

  • Silvestroni L, Frajese G, Fabrizio M (1976) Histones instead of protamines in terminal germ cells of infertile, oligospermic men. Fertil Steril 27:1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M (1998) Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod 4:939–945

    Article  CAS  PubMed  Google Scholar 

  • Steger K, Failing K, Klonisch T, Behre HM, Manning M, Weidner W, Hertle L, Bergmann M, Kliesch S (2001) Round spermatids from infertile men exhibit decreased protamine-1 and -2 mRNA. Hum Reprod 16:709–716

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K et al (2005) HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 25:7107–7119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P (1978) Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res 117:347–356

    Article  CAS  PubMed  Google Scholar 

  • Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, Borini A (2009) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18:486–495

    Article  PubMed  Google Scholar 

  • Tavalaee M, Razavi S, Nasr-Esfahani MH (2009) Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril 91:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Torregrosa N, Dominguez-Fandos D, Camejo MI, Shirley CR, Meistrich ML, Ballesca JL, Oliva R (2006) Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod 21:2084–2089

    Article  CAS  PubMed  Google Scholar 

  • Trostle-Weige PK, Meistrich ML, Brock WA, Nishioka K, Bremer JW (1982) Isolation and characterization of TH2A, a germ cell-specific variant of histone 2A in rat testis. J Biol Chem 257:5560–5567

    CAS  PubMed  Google Scholar 

  • Trostle-Weige PK, Meistrich ML, Brock WA, Nishioka K (1984) Isolation and characterization of TH3, a germ cell-specific variant of histone 3 in rat testis. J Biol Chem 259:8769–8776

    CAS  PubMed  Google Scholar 

  • Unni E, Zhang Y, Kangasniemi M, Saperstein W, Moss SB, Meistrich ML (1995) Stage-specific distribution of the spermatid-specific histone 2B in the rat testis. Biol Reprod 53:820–826

    Article  CAS  PubMed  Google Scholar 

  • Urahama T, Harada A, Maehara K, Horikoshi N, Sato K, Sato Y, Shiraishi K, Sugino N, Osakabe A, Tachiwana H et al (2016) Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics Chromatin 9:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Utsuno H, Miyamoto T, Oka K, Shiozawa T (2014) Morphological alterations in protamine-deficient spermatozoa. Hum Reprod 29:2374–2381

    Article  CAS  PubMed  Google Scholar 

  • van Roijen HJ, Ooms MP, Spaargaren MC, Baarends WM, Weber RF, Grootegoed JA, Vreeburg JT (1998) Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 13:1559–1566

    Article  PubMed  Google Scholar 

  • Wennerholm UB, Bergh C, Hamberger L, Lundin K, Nilsson L, Wikland M, Kallen B (2000) Incidence of congenital malformations in children born after ICSI. Hum Reprod 15:944–948

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Ma L, Burns KH, Matzuk MM (2003) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci U S A 100:10546–10551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying HQ, Scott MB, Zhou-cun A (2012) Relationship of SNP of H2BFWT gene to male infertility in a Chinese population with idiopathic spermatogenesis impairment. Biomarkers 17:402–406

    Article  CAS  PubMed  Google Scholar 

  • Yuen BT, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS (2014) Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 141:3483–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, San Gabriel M, Zini A (2006) Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl 27:414–420

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM et al (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21:7243–7255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Shirley CR, Mounsey S, Meistrich ML (2004) Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and Tnp2 mutations. Biol Reprod 71:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM (2014) CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 131:35–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge with gratitude the research contributions of all the authors whose work has been cited in this review (IR/394/07-2016). We also thank Mr. Vivian Lobo, a graduate student from my laboratory, for his inputs with the figures and Mr. Vaibhav Shinde for his help with the graphic design. We thank the Department of Biotechnology, India for the Junior Research Fellowship to Mr Aniket Patankar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Parte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Patankar, A., Parte, P. (2017). Sperm Chromatin Compaction and Male Infertility. In: SINGH, R., Singh, K. (eds) Male Infertility: Understanding, Causes and Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-10-4017-7_17

Download citation

Publish with us

Policies and ethics