Skip to main content

Clinical Evaluation of Focused High-Resolution Breast PET

  • Chapter
  • First Online:
Personalized Pathway-Activated Systems Imaging in Oncology

Abstract

Breast cancer has high incidence among women worldwide. Previous studies indicate that conventional whole-body positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) can be used to detect metastasis in patients with breast cancer. However, it may not perform well in the assessment of the primary site, mainly due to limited spatial resolution. To circumvent this limitation, some groups have developed high-resolution PET systems that are specifically designed for breast evaluation. In this chapter, we review features of dedicated breast PET systems and present examples of clinical studies performed thus far. These include our clinical experiences with a comprehensive breast PET system, using a ring-shaped scanner. Future developments related to specific breast PET systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abreu MC, Aguiar JD, Almeida FG, et al. Design and evaluation of the clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci. 2006;53:71–7.

    Article  CAS  Google Scholar 

  2. Avril N, Dose J, Jänicke F, et al. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol. 1996;14:1848–57.

    Article  CAS  PubMed  Google Scholar 

  3. Avril N, Rosé CA, Schelling M, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–502.

    Article  CAS  PubMed  Google Scholar 

  4. Berg WA, Weinberg IN, Narayanan D, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12:309–23.

    Article  PubMed  Google Scholar 

  5. Berg WA, Madsen KS, Schilling K, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258:59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Berg WA, Madsen KS, Schilling K, et al. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am J Roentgenol. 2012;198:219–32.

    Article  PubMed  Google Scholar 

  7. Bettinardi V, Danna M, Savi A, et al. Performance evaluation of the new whole-body PET/CT scanner: discovery ST. Eur J Nucl Med Mol Imaging. 2004;31:867–81.

    Article  PubMed  Google Scholar 

  8. Bowen SL, Wu Y, Chaudhari AJ, et al. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med. 2009;50:1401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Broeders M, Moss S, Nyström L, et al. The impact of mammographic screening on breast cancer mortality in Europe: a review of observational studies. J Med Screen. 2012;19:14–25.

    Article  PubMed  Google Scholar 

  10. Bruening W, Uhl S, Fontanarosa J, et al. Noninvasive diagnostic tests for breast abnormalities: update of a 2006 review. Comparative Effectiveness Review No. 47. (Prepared by the ECRI Institute Evidence-based Practice Center under Contract No. 290- 02-0019.) AHRQ Publication No. 12-EHC014-EF. Rockville: Agency for Healthcare Research and Quality; 2012.

    Google Scholar 

  11. Caldarella C, Treglia G, Giordano A. Diagnostic performance of dedicated positron emission mammography using fluorine-18-fluorodeoxyglucose in women with suspicious breast lesions: a meta-analysis. Clin Breast Cancer. 2014;14:241–8.

    Article  PubMed  Google Scholar 

  12. De Ponti E, Morzenti S, Guerra L, et al. Performance measurements for the PET/CT Discovery-600 using NEMA NU 2-2007 standards. Med Phys. 2011;38:968–74.

    Article  CAS  PubMed  Google Scholar 

  13. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64:52–62.

    Article  PubMed  Google Scholar 

  14. Eo JS, Chun IK, Paeng JC, et al. Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast. 2012;21:66–71.

    Article  PubMed  Google Scholar 

  15. Fowler AM. A molecular approach to breast imaging. J Nucl Med. 2014;55:177–80.

    Article  PubMed  Google Scholar 

  16. Glass SB, Shah ZA. Clinical utility of positron emission mammography. Proc (Baylor Univ Med Cent). 2013;26:314–9.

    Google Scholar 

  17. Global Burden of Disease Pediatrics Collaboration, Fitzmaurice C, Dicker D, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1:505–27.

    Article  Google Scholar 

  18. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. 2010;257:246–53.

    Article  PubMed  Google Scholar 

  21. Iima M, Nakamoto Y, Kanao S, et al. Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med. 2012;53:1534–42.

    Article  PubMed  Google Scholar 

  22. Kalinyak JE, Berg WA, Schilling K, et al. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:260–75.

    Article  PubMed  Google Scholar 

  23. Levine EA, Freimanis RI, Perrier ND, et al. Positron emission mammography: initial Clinical Results. Ann Surg Oncol. 2003;10:86–91.

    Article  PubMed  Google Scholar 

  24. Luo W, Anashkin E, Matthews CG. Performance evaluation of a PEM scanner using the NEMA NU 4—2008 small animal PET standards. IEEE Trans Nucl Sci. 2010;57:94–103.

    Article  Google Scholar 

  25. MacDonald L, Edwards J, Lewellen T, et al. Clinical imaging characteristics of the positron emission mammography camera: PEM Flex Solo II. J Nucl Med. 2009;50:1666–75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miyake KK, Matsumoto K, Inoue M, et al. Performance evaluation of a new dedicated Breast PET Scanner using NEMA NU4-2008 Standards. J Nucl Med. 2014;55:1198–203.

    Article  CAS  PubMed  Google Scholar 

  27. Moadel RM. Breast cancer imaging devices. Semin Nucl Med. 2011;41:229–41.

    Article  PubMed  Google Scholar 

  28. Murthy K, Aznar M, Thompson CJ, et al. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851–8.

    CAS  PubMed  Google Scholar 

  29. O’Connor MK, Li H, Rhodes DJ, et al. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. Med Phys. 2010;37:6187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  31. Ravindranath B, Junnarkar SS, Purschke ML, et al. Results from prototype II of the BNL simultaneous PET-MRI dedicated breast scanner. IEEE Nucl Sci Symp Conf Rec. 2009;2009:3315–7.

    Google Scholar 

  32. Raylman RR, Majewski S, Smith MF, et al. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol. 2008;53:637–53.

    Article  PubMed  Google Scholar 

  33. Rosen EL, Turkington TG, Soo MS, et al. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology. 2005;234:527–34.

    Article  PubMed  Google Scholar 

  34. Schilling K, Narayanan D, Kalinyak JE, et al. Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2011;38:23–36.

    Article  PubMed  Google Scholar 

  35. Shapiro S. Periodic screening for breast cancer: the HIP Randomized Controlled Trial. Health Insurance Plan J Natl Cancer Inst Monogr. 1997;22:27–30.

    Article  Google Scholar 

  36. Springer A, Mawlawi OR. Evaluation of the quantitative accuracy of a commercially available positron emission mammography scanner. Med Phys. 2011;38:2132–9.

    Article  PubMed  Google Scholar 

  37. Tabár L, Vitak B, Chen HH, et al. The Swedish two-county trial twenty years later. updated mortality results and new insights from long-term follow-up. Radiol Clin N Am. 2000;38:625–51.

    Article  PubMed  Google Scholar 

  38. Tai Y-C, Wu H, Pal D, O’Sullivan JA. Virtual-Pinhole PET. J Nucl Med. 2008;49:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Miyake, K.K., Nakamoto, Y. (2017). Clinical Evaluation of Focused High-Resolution Breast PET. In: Inoue, T., Yang, D., Huang, G. (eds) Personalized Pathway-Activated Systems Imaging in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3349-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3349-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3348-3

  • Online ISBN: 978-981-10-3349-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics