Skip to main content

Urethral Sphincter: Stress Urinary Incontinence

  • Chapter
  • First Online:
Book cover Clinical Regenerative Medicine in Urology
  • 1112 Accesses

Abstract

Urinary incontinence is described as the involuntary loss of urine and is a common condition in middle-aged and elderly women and men [1]. Urinary incontinence can be generally classified into the following three: (1) stress urinary incontinence, (2) urge urinary incontinence, and (3) a mixed form of (1) and (2) [1]. Stress urinary incontinence occurs when increased intra-abdominal pressure causes bladder pressure to exceed urethral pressure, resulting in involuntary leakage of urine. In stress urinary incontinence, urine leakage can be observed during coughing, sneezing, laughing, lifting, and exercising. Classically stress urinary incontinence often relies on distinguishing between intrinsic sphincter deficiency and urethral malposition or hypermobility [2]. However, this is controversial as each component may contribute in varying proportion to the occurrence of stress urinary incontinence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21(2):167–78.

    Article  PubMed  Google Scholar 

  2. Kalejaiye O, Vij M, Drake MJ. Classification of stress urinary incontinence. World J Urol. 2015;33(9):1215–20.

    Article  PubMed  Google Scholar 

  3. Norton P, Brubaker L. Urinary incontinence in women. Lancet. 2006;367(9504):57–67.

    Article  PubMed  Google Scholar 

  4. Hunskaar S, Lose G, Sykes D, Voss S. The prevalence of urinary incontinence in women in four European countries. BJU Int. 2004;93(3):324–30.

    Article  CAS  PubMed  Google Scholar 

  5. Carlson KV, Nitti VW. Prevention and management of incontinence following radical prostatectomy. Urol Clin North Am. 2001;28(3):595–612.

    Article  CAS  PubMed  Google Scholar 

  6. Strohbehn K, Lauria MR. Risk of urinary incontinence after childbirth: a 10-year prospective cohort study. Obstet Gynecol. 2007;109(1):202; author reply-3.

    Article  PubMed  Google Scholar 

  7. Cundiff GW. The pathophysiology of stress urinary incontinence: a historical perspective. Rev Urol. 2004;6(Suppl 3):S10–8.

    PubMed  PubMed Central  Google Scholar 

  8. Petros PEP, Ulmsten U. Urethral pressure increase on effort originates from within the urethra, and continence from musculovaginal closure. Neurourol Urodyn. 1995;14(4):337–50.

    Article  CAS  PubMed  Google Scholar 

  9. Kayigil O, Ahmed SI, Metin A. The coexistence of intrinsic sphincter deficiency with type II stress incontinence. J Urol. 1999;162(4):1365–6.

    Article  CAS  PubMed  Google Scholar 

  10. Radomski SB. Practical evaluation of post-prostatectomy incontinence. Cuaj-Can Urol Assoc. 2013;7(9-10):S186–S8.

    Article  Google Scholar 

  11. Dalkin BL, Wessells H, Cui HY. A national survey of urinary and health related quality of life outcomes in men with an artificial urinary sphincter for post-radical prostatectomy incontinence. J Urol. 2003;169(1):237–9.

    Article  PubMed  Google Scholar 

  12. Harding CK, Thorpe AC. The surgical treatment of female stress urinary incontinence. Indian J Urol. 2010;26(2):257–62.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mischinger J, Amend B, Reisenauer C, Bedke J, Naumann G, Germann M, et al. Different surgical approaches for stress urinary incontinence in women. Minerva Ginecol. 2013;65(1):21–8.

    CAS  PubMed  Google Scholar 

  14. Hakim L, De Ridder D, Van der Aa F. Slings for urinary incontinence and the application of cell-based therapy. Adv Drug Deliv Rev. 2015;82–83:22–30.

    Article  PubMed  CAS  Google Scholar 

  15. Koski ME, Enemchukwu EA, Padmanabhan P, Kaufman MR, Scarpero HM, Dmochowski RR. Safety and efficacy of sling for persistent stress urinary incontinence after bulking injection. Urology. 2011;77(5):1076–80.

    Article  PubMed  Google Scholar 

  16. Nilsson CG, Palva K, Aarnio R, Morcos E, Falconer C. Seventeen years’ follow-up of the tension-free vaginal tape procedure for female stress urinary incontinence. Int Urogynecol J. 2013;24(8):1265–9.

    Article  CAS  PubMed  Google Scholar 

  17. Phe V, Benadiba S, Roupret M, Granger B, Richard F, Chartier-Kastler E. Long-term functional outcomes after artificial urinary sphincter implantation in women with stress urinary incontinence. BJU Int. 2014;113(6):961–7.

    Article  PubMed  Google Scholar 

  18. Stanford EJ, Paraiso MF. A comprehensive review of suburethral sling procedure complications. J Minim Invasive Gynecol. 2008;15(2):132–45.

    Article  PubMed  Google Scholar 

  19. Osborn DJ, Dmochowski RR, Harris CJ, Danford JJ, Kaufman MR, Mock S, et al. Analysis of patient and technical factors associated with midurethral sling mesh exposure and perforation. Int J Urol. 2014;21(11):1167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohr S, Siegenthaler M, Mueller MD, Kuhn A. Bulking agents: an analysis of 500 cases and review of the literature. Int Urogynecol J. 2013;24(2):241–7.

    Article  PubMed  Google Scholar 

  21. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lin CS, Lue TF. Stem cell therapy for stress urinary incontinence: a critical review. Stem Cells Dev. 2012;21(6):834–43.

    Article  CAS  PubMed  Google Scholar 

  24. Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell therapy for stress urinary incontinence. Tissue Eng B Rev. 2015;21(4):365–76.

    Article  CAS  Google Scholar 

  25. Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol. 2015;7(1):22–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Badra S, Andersson KE, Dean A, Mourad S, Williams JK. Long-term structural and functional effects of autologous muscle precursor cell therapy in a nonhuman primate model of urinary sphincter deficiency. J Urol. 2013;190(5):1938–45.

    Article  PubMed  Google Scholar 

  27. Klauser A, Frauscher F, Strasser H, Helweg G, Kolle D, Strohmeyer D, et al. Age-related rhabdosphincter function in female urinary stress incontinence: assessment of intraurethral sonography. J Ultrasound Med. 2004;23(5):631–7; quiz 8-9.

    Article  PubMed  Google Scholar 

  28. Goldman HB, Sievert KD, Damaser MS. Will we ever use stem cells for the treatment of SUI?: ICI-RS 2011. Neurourol Urodyn. 2012;31(3):386–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vaegler M, Lenis AT, Daum L, Amend B, Stenzl A, Toomey P, et al. Stem cell therapy for voiding and erectile dysfunction. Nat Rev Urol. 2012;9(8):435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim JH, Lee SR, Song YS, Lee HJ. Stem cell therapy in bladder dysfunction: where are we? And where do we have to go? BioMed Res Int. 2013;2013:1–10.

    Google Scholar 

  31. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med. 2012;29(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  32. Singla DK, Abdelli LS. Embryonic stem cells and released factors stimulate c-kit(+)/FLK-1(+) progenitor cells and promote neovascularization in doxorubicin-induced cardiomyopathy. Cell Transplant. 2015;24(6):1043–52.

    Article  PubMed  Google Scholar 

  33. Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.

    Google Scholar 

  34. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6(10):e26535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  36. Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23(1):33–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang HJ, Chuang YC, Chancellor MB. Development of cellular therapy for the treatment of stress urinary incontinence. Int Urogynecol J. 2011;22(9):1075–83.

    Article  CAS  PubMed  Google Scholar 

  38. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2(2):83–92.

    CAS  PubMed  Google Scholar 

  39. Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells. Cell Transplant. 2011;20(1):5–14.

    Article  PubMed  Google Scholar 

  40. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.

    Article  CAS  PubMed  Google Scholar 

  41. Lavker RM, Sun TT, Oshima H, Barrandon Y, Akiyama M, Ferraris C, et al. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003;8(1):28–38.

    Article  PubMed  Google Scholar 

  42. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17(3):303–11.

    Article  PubMed  Google Scholar 

  43. Zhang Y, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  CAS  PubMed  Google Scholar 

  44. Wu S, Wang Z, Bharadwaj S, Hodges SJ, Atala A, Zhang Y. Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction. J Urol. 2011;186(2):640–7.

    Article  CAS  PubMed  Google Scholar 

  45. Bharadwaj S, Liu GH, Shi YG, Markert C, Andersson KE, Atala A, et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng A. 2011;17(15-16):2123–32.

    Article  Google Scholar 

  46. Lang R, Liu GH, Shi YG, Bharadwaj S, Leng XY, Zhou XB, et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. Plos One. 2013;8(1):e53980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu GH, Pareta RA, Wu RP, Shi YG, Zhou XB, Liu H, et al. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials. 2013;34(4):1311–26.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Atala A. Urothelial cell culture. Methods Mol Biol. 2013;1037:27–43.

    Article  CAS  PubMed  Google Scholar 

  49. Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–56.

    Article  CAS  PubMed  Google Scholar 

  50. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013:130763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643–5.

    Article  CAS  PubMed  Google Scholar 

  52. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006;24(4):1030–41.

    Article  CAS  PubMed  Google Scholar 

  53. Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 2007;11(1):21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.

    Article  PubMed  CAS  Google Scholar 

  55. Woo LL, Hijaz A, Kuang M, Penn MS, Damaser MS, Rackley RR. Over expression of stem cell homing cytokines in urogenital organs following vaginal distention. J Urol. 2007;177(4):1568–72.

    Article  CAS  PubMed  Google Scholar 

  56. Wood HM, Kuang M, Woo L, Hijaz A, Butler RS, Penn M, et al. Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J Urol. 2008;180(2):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lenis AT, Kuang M, Woo LL, Hijaz A, Penn MS, Butler RS, et al. Impact of parturition on chemokine homing factor expression in the vaginal distention model of stress urinary incontinence. J Urol. 2013;189(4):1588–94.

    Article  CAS  PubMed  Google Scholar 

  58. Cruz M, Dissaranan C, Cotleur A, Kiedrowski M, Penn M, Damaser M. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int. 2012;2012:612946.

    Article  PubMed  CAS  Google Scholar 

  59. Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406.

    Article  PubMed  Google Scholar 

  60. Woo LL, Tanaka ST, Anumanthan G, Pope JCT, Thomas JC, Adams MC, et al. Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: preliminary data. J Urol. 2011;185(3):1132–8.

    Article  PubMed  Google Scholar 

  61. Rombouts WJC, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17(1):160–70.

    Article  CAS  PubMed  Google Scholar 

  62. De Becker A, Van Hummelen P, Bakkus M, Broek IV, De Wever J, De Waele M, et al. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematol-Hematol J. 2007;92(4):440–9.

    Article  Google Scholar 

  63. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue HS, Savitz SI, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–91.

    Article  CAS  PubMed  Google Scholar 

  64. Ghionzoli M, Cananzi M, Zani A, Rossi CA, Leon FF, Pierro A, et al. Amniotic fluid stem cell migration after intraperitoneal injection in pup rats: implication for therapy. Pediatr Surg Int. 2010;26(1):79–84.

    Article  PubMed  Google Scholar 

  65. Fu Q, Song XF, Liao GL, Deng CL, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 2010;75(3):718–23.

    Article  PubMed  Google Scholar 

  66. Kim SO, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int. 2011;86(1):110–6.

    Article  PubMed  Google Scholar 

  67. Lin GT, Wang GF, Banie L, Ning HX, Shindel AW, Fandel TM, et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy. 2010;12(1):88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu R, Liu G, Bharadwaj S, Zhang Y. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering. Methods Mol Biol. 2013;1001:65–80.

    Article  CAS  PubMed  Google Scholar 

  69. Carvalho MM, Teixeira FG, Reis RL, Sousa N, Salgado AJ. Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr Stem Cell Res Ther. 2011;6(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  70. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  71. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.

    Article  CAS  PubMed  Google Scholar 

  72. Stastna M, Van Eyk JE. Secreted proteins as a fundamental source for biomarker discovery. Proteomics. 2012;12(4–5):722–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8.

    Article  CAS  Google Scholar 

  74. Duijvestein M, van den Brink GR, Hommes DW. Stem cells as potential novel therapeutic strategy for inflammatory bowel disease. J Crohns Colitis. 2008;2(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  75. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Telukuntla KS, Suncion VY, Schulman IH, Hare JM. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc. 2013;2(5):e000338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 2011;6(3):206–14.

    Article  PubMed  Google Scholar 

  79. Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, et al. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant. 2012;21(8):1641–50.

    Article  PubMed  Google Scholar 

  80. Lin AS, Carrier S, Morgan DM, Lue TF. Effect of simulated birth trauma on the urinary continence mechanism in the rat. Urology. 1998;52(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  81. Pan HQ, Kerns JM, Lin DL, Liu S, Esparza N, Damaser MS. Increased duration of simulated childbirth injuries results in increased time to recovery. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Woo LL, Hijaz A, Pan HQ, Kuang M, Rackley RR, Damaser MS. Simulated childbirth injuries in an inbred rat strain. Neurourol Urodyn. 2009;28(4):356–61.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Burdzinska A, Crayton R, Dybowski B, Koperski L, Idziak M, Fabisiak M, et al. Urethral distension as a novel method to simulate sphincter insufficiency in the porcine animal model. Int J Urol. 2012;19(7):676–82.

    Article  PubMed  Google Scholar 

  84. Kerns JM, Damaser MS, Kane JM, Sakamoto K, Benson JT, Shott S, et al. Effects of pudendal nerve injury in the female rat. Neurourol Urodyn. 2000;19(1):53–69.

    Article  CAS  PubMed  Google Scholar 

  85. Pan HQ, Lin DL, Strauch C, Butler RS, Monnier VM, Daneshgari F, et al. Pudendal nerve injury reduces urethral outlet resistance in diabetic rats. Am J Physiol Ren Physiol. 2010;299(6):F1443–50.

    Article  CAS  Google Scholar 

  86. Castiglione F, Bergamini A, Bettiga A, Bivalacqua TJ, Benigni F, Strittmatter F, et al. Perioperative betamethasone treatment reduces signs of bladder dysfunction in a rat model for neurapraxia in female urogenital surgery. Eur Urol. 2012;62(6):1076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, et al. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res. 2013;10(1):95–102.

    Article  PubMed  Google Scholar 

  88. Song QX, Balog BM, Kerns J, Li Lin D, Sun YH, Damaser MS, et al. Long-term effects of simulated childbirth injury on function and innervation of the urethra. Neurourol Urodyn. 2015;34(4):381–6.

    Article  PubMed  Google Scholar 

  89. Kato H, Igawa Y, Khaleque MA, Nishizawa O. Bladder dysfunction after proximal urethrolysis in female dogs. Int J Urol. 1999;6(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez LV, Chen S, Jack GS, de Almeida F, Lee KW, Zhang R. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1332–R8.

    Article  CAS  PubMed  Google Scholar 

  91. Skaff M, Pinto E, Leite KR, Almeida FG. Development of a rabbit’s urethral sphincter deficiency animal model for anatomical-functional evaluation. Int Braz J Urol. 2012;38(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  92. Kinebuchi Y, Aizawa N, Imamura T, Ishizuka O, Igawa Y, Nishizawa O. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68.

    Article  PubMed  Google Scholar 

  93. Chermansky CJ, Tarin T, Kwon DD, Jankowski RJ, Cannon TW, de Groat WC, et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology. 2004;63(4):780–5.

    Article  PubMed  Google Scholar 

  94. Lim JJ, Jang JB, Kim JY, Moon SH, Lee CN, Lee KJ. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Korean Med Sci. 2010;25(5):663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chermansky CJ, Cannon TW, Torimoto K, Fraser MO, Yoshimura N, de Groat WC, et al. A model of intrinsic sphincteric deficiency in the rat: electrocauterization. Neurourol Urodyn. 2004;23(2):166–71.

    Article  PubMed  Google Scholar 

  96. Yiou R, Yoo JJ, Atala A. Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation. 2003;76(7):1053–60.

    Article  PubMed  Google Scholar 

  97. Zutshi M, Salcedo LB, Zaszczurynski PJ, Hull TL, Butler RS, Damaser MS. Effects of sphincterotomy and pudendal nerve transection on the anal sphincter in a rat model. Dis Colon Rectum. 2009;52(7):1321–9.

    Article  PubMed  Google Scholar 

  98. Praud C, Sebe P, Bierinx AS, Sebille A. Improvement of urethral sphincter deficiency in female rats following autologous skeletal muscle myoblasts grafting. Cell Transplant. 2007;16(7):741–9.

    Article  PubMed  Google Scholar 

  99. Eberli D, Andersson KE, Yoo JJ, Atala A. A canine model of irreversible urethral sphincter insufficiency. BJU Int. 2009;103(2):248–53.

    Article  PubMed  Google Scholar 

  100. Kefer JC, Liu G, Daneshgari F. Pubo-urethral ligament injury causes long-term stress urinary incontinence in female rats: an animal model of the integral theory. J Urol. 2009;181(1):397–400.

    Article  PubMed  Google Scholar 

  101. Kamo I, Torimoto K, Chancellor MB, de Groat WC, Yoshimura N. Urethral closure mechanisms under sneeze-induced stress condition in rats: a new animal model for evaluation of stress urinary incontinence. Am J Physiol Regul Integr Comp Physiol. 2003;285(2):R356–65.

    Article  CAS  PubMed  Google Scholar 

  102. Peng CW, Chen JJ, Chang HY, de Groat WC, Cheng CL. External urethral sphincter activity in a rat model of pudendal nerve injury. Neurourol Urodyn. 2006;25(4):388–96.

    Article  PubMed  Google Scholar 

  103. Badra S, Andersson KE, Dean A, Mourad S, Williams JK. A nonhuman primate model of stable urinary sphincter deficiency. J Urol. 2013;189(5):1967–74.

    Article  PubMed  Google Scholar 

  104. Furuta A, Jankowski RJ, Pruchnic R, Egawa S, Yoshimura N, Chancellor MB. Physiological effects of human muscle-derived stem cell implantation on urethral smooth muscle function. Int Urogynecol J. 2008;19(9):1229–34.

    Article  Google Scholar 

  105. Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res. 2010;43(11):1076–83.

    Article  CAS  PubMed  Google Scholar 

  106. Zhao WM, Zhang C, Jin CJ, Zhang ZJ, Kong DL, Xu WH, et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  107. Wu GZ, Song YF, Zheng X, Jiang ZQ. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell. 2011;43(4):246–53.

    Article  PubMed  Google Scholar 

  108. Corcos J, Loutochin O, Campeau L, Eliopoulos N, Bouchentouf M, Blok B, et al. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn. 2011;30(3):447–55.

    Article  PubMed  Google Scholar 

  109. Du XW, Wu HL, Zhu YF, Hu JB, Jin F, Lv RP, et al. Experimental study of therapy of bone marrow mesenchymal stem cells or muscle-like cells/calcium alginate composite gel for the treatment of stress urinary incontinence. Neurourol Urodyn. 2013;32(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  110. Chun SY, Kwon JB, Chae SY, Lee JK, Bae JS, Kim BS, et al. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770–83.

    Article  PubMed  Google Scholar 

  111. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933–46.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hardy SA, Maltman DJ, Przyborski SA. Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther. 2008;3(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  113. Li GY, Zhou F, Gong YQ, Cui WS, Yuan YM, Song WD, et al. Activation of VEGF and ERK1/2 and improvement of urethral function by adipose-derived stem cells in a rat stress urinary incontinence model. Urology. 2012;80(4):953–e1.

    PubMed  Google Scholar 

  114. Obinata D, Matsumoto T, Ikado Y, Sakuma T, Kano K, Fukuda N, et al. Transplantation of mature adipocyte-derived dedifferentiated fat (DFAT) cells improves urethral sphincter contractility in a rat model. Int J Urol. 2011;18(12):827–34.

    Article  CAS  PubMed  Google Scholar 

  115. Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, et al. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transplant. 2008;17(8):877–86.

    Article  PubMed  Google Scholar 

  116. Kwon D, Kim Y, Pruchnic R, Jankowski R, Usiene I, De Miguel F, et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology. 2006;68(2):449–54.

    Article  PubMed  Google Scholar 

  117. Mitterberger M, Pinggera GM, Marksteiner R, Margreiter E, Plattner R, Klima G, et al. Functional and histological changes after myoblast injections in the porcine rhabdosphincter. Eur Urol. 2007;52(6):1736–43.

    Article  PubMed  Google Scholar 

  118. Yiou R, Dreyfus P, Chopin DK, Abbou CC, Lefaucheur JP. Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int. 2002;89(3):298–302.

    Article  CAS  PubMed  Google Scholar 

  119. Kim YT, Kim DK, Jankowski RJ, Pruchnic R, Usiene I, de Miguel F, et al. Human muscle-derived cell injection in a rat model of stress urinary incontinence. Muscle Nerve. 2007;36(3):391–3.

    Article  PubMed  Google Scholar 

  120. Kim BS, Chun SY, Lee JK, Lim HJ, Bae JS, Chung HY, et al. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med. 2012;10:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bandyopadhyay B, Thakur A, Dave V, Viswanathan C, Ghosh D. A non-invasive method to evaluate the efficacy of human myoblast in botulinum-A toxin induced stress urinary incontinence model in rats. Urol J. 2013;10(4):1126–34.

    Google Scholar 

  122. Aref-Adib M, Lamb BW, Lee HB, Akinnawo E, Raza MM, Hughes A, et al. Stem cell therapy for stress urinary incontinence: a systematic review in human subjects. Arch Gynecol Obstet. 2013;288(6):1213–21.

    Article  CAS  PubMed  Google Scholar 

  123. Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Colleselli D, Frauscher F, et al. Autologous myoblasts and fibroblasts for female stress incontinence: a 1-year follow-up in 123 patients. BJU Int. 2007;100(5):1081–5.

    PubMed  Google Scholar 

  124. Mitterberger M, Marksteiner R, Margreiter E, Pinggera GM, Frauscher F, Ulmer H, et al. Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-year followup of 63 patients. J Urol. 2008;179(1):226–31.

    Article  PubMed  Google Scholar 

  125. Mitterberger M, Pinggera GM, Marksteiner R, Margreiter E, Fussenegger M, Frauscher F, et al. Adult stem cell therapy of female stress urinary incontinence. Eur Urol. 2008;53(1):169–75.

    Article  PubMed  Google Scholar 

  126. Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(6):881–3.

    Article  CAS  PubMed  Google Scholar 

  127. Sebe P, Doucet C, Cornu JN, Ciofu C, Costa P, de Medina SG, et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int Urogynecol J. 2011;22(2):183–9.

    Article  PubMed  Google Scholar 

  128. Cornu JN, Lizee D, Pinset C, Haab F. Long-term follow-up after regenerative therapy of the urethral sphincter for female stress urinary incontinence. Eur Urol. 2014;65(1):256–8.

    Article  PubMed  Google Scholar 

  129. Blaganje M, Lukanovic A. Ultrasound-guided autologous myoblast injections into the extrinsic urethral sphincter: tissue engineering for the treatment of stress urinary incontinence. Int Urogynecol J. 2013;24(4):533–5.

    Article  PubMed  Google Scholar 

  130. Gerullis H, Eimer C, Georgas E, Homburger M, El-Baz AG, Wishahi M, et al. Muscle-derived cells for treatment of iatrogenic sphincter damage and urinary incontinence in men. Sci World J. 2012;2012:1–6.

    Article  Google Scholar 

  131. Stangel-Wojcikiewicz K, Jarocha D, Piwowar M, Jach R, Uhl T, Basta A, et al. Autologous muscle-derived cells for the treatment of female stress urinary incontinence: a 2-year follow-up of a polish investigation. Neurourol Urodyn. 2014;33(3):324–30.

    Article  PubMed  Google Scholar 

  132. Carr LK, Robert M, Kultgen PL, Herschorn S, Birch C, Murphy M, et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J Urol. 2013;189(2):595–601.

    Article  PubMed  Google Scholar 

  133. Peters KM, Dmochowski RR, Carr LK, Robert M, Kaufman MR, Sirls LT, et al. Autologous muscle derived cells for treatment of stress urinary incontinence in women. J Urol. 2014;192(2):469–76.

    Article  PubMed  Google Scholar 

  134. Yamamoto T, Gotoh M, Kato M, Majima T, Toriyama K, Kamei Y, et al. Periurethral injection of autologous adipose-derived regenerative cells for the treatment of male stress urinary incontinence: report of three initial cases. Int J Urol. 2012;19(7):652–9.

    Article  PubMed  Google Scholar 

  135. Gotoh M, Yamamoto T, Kato M, Majima T, Toriyama K, Kamei Y, et al. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose-derived regenerative cells: 1-year outcomes in 11 patients. Int J Urol. 2014;21(3):294–300.

    Article  PubMed  Google Scholar 

  136. Lee CN, Jang JB, Kim JY, Koh C, Baek JY, Lee KJ. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J Korean Med Sci. 2010;25(6):813–6.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Shirvan MK, Alamdari DH, Mahboub MD, Ghanadi A, Rahimi HR, Seifalian AM. A novel cell therapy for stress urinary incontinence, short-term outcome. Neurourol Urodyn. 2013;32(4):377–82.

    Article  CAS  PubMed  Google Scholar 

  138. Pokrywczynska M, Adamowicz J, Czapiewska M, Balcerczyk D, Jundzill A, Nowacki M, et al. Targeted therapy for stress urinary incontinence: a systematic review based on clinical trials. Expert Opin Biol Ther. 2016;16(2):233–42.

    Article  CAS  PubMed  Google Scholar 

  139. Herschorn S, Radomski SB. Collagen injections for genuine stress urinary incontinence: patient selection and durability. Int Urogynecol J Pelvic Floor Dysfunct. 1997;8(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  140. Blaganje M, Lukanovic A. Intrasphincteric autologous myoblast injections with electrical stimulation for stress urinary incontinence. Int J Gynaecol Obstet. 2012;117(2):164–7.

    Article  PubMed  Google Scholar 

  141. Gras S, Klarskov N, Lose G. Intraurethral injection of autologous minced skeletal muscle: a simple surgical treatment for stress urinary incontinence. J Urol. 2014;192(3):850–5.

    Article  PubMed  Google Scholar 

  142. Kuismanen K, Sartoneva R, Haimi S, Mannerstrom B, Tomas E, Miettinen S, et al. Autologous adipose stem cells in treatment of female stress urinary incontinence: results of a pilot study. Stem Cells Transl Med. 2014;3(8):936–41.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Klein G, Hart ML, Brinchmann JE, Rolauffs B, Stenzl A, Sievert KD, et al. Mesenchymal stromal cells for sphincter regeneration. Adv Drug Deliv Rev. 2015;82–83:123–36.

    Article  PubMed  CAS  Google Scholar 

  144. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012;10(3):244–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lavoie JR, Rosu-Myles M. Uncovering the secretes of mesenchymal stem cells. Biochimie. 2013;95(12):2212–21.

    Article  CAS  PubMed  Google Scholar 

  146. Deng KL, Lin DL, Hanzlicek B, Balog B, Penn MS, Kiedrowski MJ, et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol-Renal. 2015;308(2):F92–F100.

    Article  CAS  Google Scholar 

  147. Jiang HH, Damaser MS. Animal models of stress urinary incontinence. Handb Exp Pharmacol. 2011;202:45–67.

    Article  CAS  Google Scholar 

  148. Hong SH, Piao S, Kim IG, Lee JY, Cho HJ, Kim SW, et al. Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension. Urology. 2013;81(2):465.e1–6.

    Article  Google Scholar 

  149. Koike Y, Furuta A, Suzuki Y, Honda M, Naruoka T, Asano K, et al. Pathophysiology of urinary incontinence in murine models. Int J Urol. 2013;20(1):64–71.

    Article  PubMed  Google Scholar 

  150. Herrera-Imbroda B, Lara MF, Izeta A, Sievert KD, Hart ML. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Adv Drug Deliv Rev. 2015;82–83:106–16.

    Article  PubMed  CAS  Google Scholar 

  151. Sloff M, Simaioforidis V, de Vries R, Oosterwijk E, Feitz W. Tissue engineering of the bladder – reality or myth? A systematic review. J Urol. 2014;192(4):1035–42.

    Article  PubMed  Google Scholar 

  152. Eberli D, Aboushwareb T, Soker S, Yoo JJ, Atala A. Muscle precursor cells for the restoration of irreversibly damaged sphincter function. Cell Transplant. 2012;21(9):2089–98.

    Article  PubMed  Google Scholar 

  153. Williams JK, Eckman D, Dean A, Moradi M, Allickson J, Cline JM, et al. The dose-effect safety profile of skeletal muscle precursor cell therapy in a dog model of intrinsic urinary sphincter deficiency. Stem Cells Transl Med. 2015;4(3):286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Burdzinska A, Crayton R, Dybowski B, Idziak M, Gala K, Radziszewski P, et al. The effect of endoscopic administration of autologous porcine muscle-derived cells into the urethral sphincter. Urology. 2013;82(3):743.e1–8.

    Article  Google Scholar 

  155. Ganzer R, Kohler D, Neuhaus J, Dorschner W, Stolzenburg JU. Is the rhesus monkey (Macaca mulatta) comparable to humans? Histomorphology of the sphincteric musculature of the lower urinary tract including 3D-reconstruction. Anat Histol Embryol. 2004;33(6):355–61.

    Article  CAS  PubMed  Google Scholar 

  156. Kaplan JR, Manuck SB. Ovarian dysfunction, stress, and disease: a primate continuum. ILAR J. 2004;45(2):89–115.

    Article  CAS  PubMed  Google Scholar 

  157. Hijaz AK, Grimberg KO, Tao M, Schmotzer B, Sadeghi Z, Lin YH, et al. Stem cell homing factor, CCL7, expression in mouse models of stress urinary incontinence. Female Pelvic Med Reconstr Surg. 2013;19(6):356–61.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther. 2011;11(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  159. Herberg S, Shi XM, Johnson MH, Hamrick MW, Isales CM, Hill WD. Stromal cell-derived factor-1 beta mediates cell survival through enhancing autophagy in bone marrow-derived mesenchymal stem cells. Plos One. 2013;8(3):e58207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev. 2013;65(3):1091–133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med. 2014;92(5):433–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Sang Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yoo, E.S., Lee, J.N. (2018). Urethral Sphincter: Stress Urinary Incontinence. In: Kim, B. (eds) Clinical Regenerative Medicine in Urology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2723-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2723-9_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2722-2

  • Online ISBN: 978-981-10-2723-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics