Skip to main content

Submitochondrial Calpains in Pathophysiological Consequences

  • Chapter
  • First Online:
Proteases in Physiology and Pathology

Abstract

It has now been well established that different mitochondrial compartments contain varieties of calpains. The expression levels of these calpains are tissue and cell type specific. Although, mitochondrial compartments contain different types of calpains, the precise location within mitochondria and their functions remain imprecise. The aim of the present review is to confer information concerning the localization of calpains in different mitochondrial compartments affiliated with their function, particularly in pathophysiological conditions. For instance, mitochondrial μ-calpain is located within the inner membrane, intermembrane space, and mitochondrial matrix depending on cell types. μ-Calpain activity facilitates cleavage of apoptosis-inducing factor (AIF) within inner membrane and intermembrane space, while the activated μ-calpain within matrix is associated with cleavage of complex I subunits and metabolic enzymes. Understandably, inhibition of the μ-calpain could be a potential strategy to ameliorate ischemia–reperfusion-associated injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224–236

    Article  CAS  PubMed  Google Scholar 

  2. Sorimachi H, Hata S, Ono Y (2011) Impact of genetic insights into calpain biology. J Biochem 150:23–37

    Article  CAS  PubMed  Google Scholar 

  3. Neuhof C, Neuhof H (2014) Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 6:638–652

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen Q, Lesnefsky EJ (2015) Heart mitochondria and calpain 1: location, function, and targets. Biochim Biophys Acta 1852:2372–2378

    Article  CAS  PubMed  Google Scholar 

  5. Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S (2010) Mitochondrial calpain system: an overview. Arch Biochem Biophys 495:1–7

    Article  CAS  PubMed  Google Scholar 

  6. Ozaki T, Tomita H, Tamai M, Ishiguro S (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376

    Article  CAS  PubMed  Google Scholar 

  7. Badugu R, Garcia M, Bondada V, Joshi A, Geddes JW (2008) N terminus of calpain 1 is a mitochondrial targeting sequence. J Biol Chem 283:3409–3417

    Article  CAS  PubMed  Google Scholar 

  8. Kar P, Chakraborti T, Samanta K, Chakraborti S (2009) μ-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation. Arch Biochem Biophys 482:67–76

    Article  Google Scholar 

  9. Kar P, Chakraborti T, Samanta K, Chakraborti S (2008) Submitochondrial localization of associated mu-calpain and calpastatin. Arch Biochem Biophys 470(2):176–186

    Article  CAS  PubMed  Google Scholar 

  10. Chen Q, Paillard M, Gomez L, Ross T, Hu Y, Xu A, Lesnefsky EJ (2011) Activation of mitochondrial mu-calpain increases AIF cleavage in cardiac mitochondria during ischemia–reperfusion. Biochem Biophys Res Commun 415:533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozaki T, Yamashita T, Ishiguro S (2009) Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 1793:1848–1859

    Article  CAS  PubMed  Google Scholar 

  12. Kosenko E, Poghosyan A, Kaminsky Y (2011) Sub cellular compartmentalization of proteolytic enzymes in brain regions and the effects of chronic beta-amyloid treatment. Brain Res 1369:184–193

    Article  CAS  PubMed  Google Scholar 

  13. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171

    Article  CAS  PubMed  Google Scholar 

  14. Bround MJ, Wambolt R, Luciani DS, Kulpa JE, Rodrigues B, Brownsey RW, Allard MF, Johnson JD (2013) Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J Biol Chem 288:18975–18986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Lisa F, Carpi A, Giorgio V, Bernardi P (2011) The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta 1813:1316–1322

    Article  PubMed  Google Scholar 

  16. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    Article  CAS  PubMed  Google Scholar 

  17. Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ (2007) Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292:C137–C147

    Article  CAS  PubMed  Google Scholar 

  18. Turrens JF, Beconi M, Barilla J, Chavez UB, McCord JM (1991) Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun 2:681–689

    Article  Google Scholar 

  19. Kar P, Chakraborti T, Roy S, Choudhury R, Chakraborti S (2007) Identification of calpastatin and μ-calpain and studies of their association in pulmonary smooth muscle mitochondria. Arch Biochem Biophys 466:166–176

    Article  Google Scholar 

  20. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Conditional disruption of ubiquitous calpains in the mouse. Genesis 44:297–303

    Article  CAS  PubMed  Google Scholar 

  21. Rao MV, McBrayer MK, Campbell J, Kumar A, Hashim A, Sershen H, Stavrides PH, Ohno M, Hutton M, Nixon RA (2014) Specific calpain inhibition by calpastatin prevents tauopathy and neurodegeneration and restores normal lifespan in tau P301L mice. J Neurosci 34:9222–9234

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ozaki T, Yamashita T, Ishiguro S (2008) ERp57-associated mitochondrial μ-calpain truncates apoptosis-inducing factor. Biochim Biophys Acta 1783:1955–1963

    Article  CAS  PubMed  Google Scholar 

  23. Herrmann JM, Kohl R (2007) Catch me if you can! Oxidative protein trapping in the inter membrane space of mitochondria. J Cell Biol 176:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ozaki T, Yamashita T, Ishiguro S (2009) Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim Biophys Acta 1793(12):1848–1859

    Article  CAS  PubMed  Google Scholar 

  25. Mizzen LA, Chang C, Garrels JI, Welch WJ (1989) Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J Biol Chem 264:20664–20675

    CAS  PubMed  Google Scholar 

  26. Liu Y, Liu W, Song XD, Zuo J (2005) Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  27. Turner MD, Cassell PG, Hitman GA (2005) Calpain-10: from genome search to function. Diabetes Metab Res 21:505–514

    Article  CAS  Google Scholar 

  28. Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 96:23–31

    Article  CAS  PubMed  Google Scholar 

  29. Inserte J, Barba I, Hernando V, Garcia-Dorado D (2009) Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 81:116–122

    Article  CAS  PubMed  Google Scholar 

  30. Neuhof C, Fabiunk V, Speth M, Moller A, Fritz F, Tillmanns H, Neuhof H, Erdogan A (2008) Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na+/H+ exchange inhibitor Cariporide in isolated perfused rabbit hearts. Biol Chem 389:1505–1512

    Article  CAS  PubMed  Google Scholar 

  31. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the inter membrane space. EMBO J 24:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Kim NS, Li X, Greer PA, Koehler RC, Dawson VL, Dawson TM (2009) Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). J Neurochem 110:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shintani-Ishida K, Yoshida KI (2015) Mitochondrial m-calpain opens the mitochondrial permeability transition pore in ischemia–reperfusion. Int J Cardiol 197:26–32

    Article  PubMed  Google Scholar 

  35. Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728

    Article  CAS  PubMed  Google Scholar 

  37. Zheng D, Wang G, Li S, Fan GC, Peng T (2015) Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochim Biophys Acta 1852:882–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Samanta K, Kar P, Chakraborti T, Chakraborti S (2013) An overview of endoplasmic reticulum calpain system. In: Chakraborti S, Dhalla NS (eds) Proteases in health and disease, advances in biochemistry in health and disease, vol 7. Springer, New York, pp 3–19

    Google Scholar 

  39. Ussher JR, Wang W, Gandhi M, Keung W, Samokhvalov V, Oka T, Wagg CS, Jaswal JS, Harris RA, Clanachan AS, Dyck JR, Lopaschuk GD (2012) Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res 94:359–369

    Article  CAS  PubMed  Google Scholar 

  40. Deng N, Zhang J, Zong C, Wang Y, Lu H, Yang P, Wang W, Young GW, Wang Y, Korge P, Lotz C, Doran P, Liem DA, Apweiler R, Weiss JN, Duan H, Ping P (2011) Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Mol Cell Proteomics 10:M110 000117

    Google Scholar 

  41. Giguere CJ, Covington MD, Schnellmann RG (2008) Mitochondrial calpain 10 activity and expression in the kidney of multiple species. Biochem Biophys Res Commun 366:258–262

    Article  CAS  PubMed  Google Scholar 

  42. Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab 18:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653

    Article  CAS  PubMed  Google Scholar 

  45. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460:72–81

    Article  CAS  PubMed  Google Scholar 

  46. Norberg E, Gogvadze V, Ott M, Horn M, Uhlen P, Orrenius S, Zhivotovsky B (2008) An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ 15:1857–1864

    Article  CAS  PubMed  Google Scholar 

  47. Norberg E, Gogvadze V, Vakifahmetoglu H, Orrenius S, Zhivotovsky B (2010) Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radic Biol Med 48:791–797

    Article  CAS  PubMed  Google Scholar 

  48. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  49. Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, Peng T (2016) Mitochondrial Calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes 65:255–268

    CAS  PubMed  Google Scholar 

  50. Bugger H, Boudina S, Hu XX et al (2008) Type 1 diabetic Akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes 57:2924–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herlein JA, Fink BD, O’Malley Y, Sivitz WI (2009) Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology 150:46–55

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Matkovich SJ, Duan X, Diwan A, Kang MY, Dorn GW 2nd (2011) Receptor-independent protein kinase C alpha (PKCalpha) signaling by calpain generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J Biol Chem 286: 26943–26951

    Google Scholar 

  53. Ma J, Wei M, Wang Q et al (2012) Deficiency of Capn4 gene inhibits nuclear factor-kB (NF-kB) protein signaling/inflammation and reduces remodeling after myocardial infarction. J Biol Chem 287:27480–27489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. French JP, Quindry JC, Falk DJ et al (2006) Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol 290:H128–H136

    Article  CAS  PubMed  Google Scholar 

  55. Pedrozo Z, Sánchez G, Torrealba N et al (2010) Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochim Biophys Acta 1802:356–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial assistance from the DST-PURSE program of the University of Kalyani is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kar, P., Samanta, K., Chakraborti, T., Alam, M.N., Chakraborti, S. (2017). Submitochondrial Calpains in Pathophysiological Consequences. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_17

Download citation

Publish with us

Policies and ethics