Skip to main content

Expression and Regulation of Pax6 in Brain of Aging Mice

  • Chapter
  • First Online:
Topics in Biomedical Gerontology

Abstract

Aging, an inevitable complex phenomenon among organisms, exhibit progressive loss of functional anatomy but understanding on molecular mechanisms of aging remains elusive. This report presents analysis of complex network of genes and proteins, their functional cascades and hierarchy, and regulation of regulators like Pax6 (Paired box 6) because symptoms of age-associated changes match with patients having mutation in Pax6. The Pax6 has been observed in the olfactory bulb, amygdala, thalamus, and the cerebellum. It is pro-neurogenic in adult neural progenitors and specifies neuronal subtypes in developing brain and the adult. During aging in brain, the reduction in Pax6-positive cells indicates loss of neurons and affects on adult neuronal stem cells. The alteration in co-localization of Pax6, p53 and SPARC may lead to the loss of plasticity, and p53 mediated cell death pathway during aging. Since the TGF-β, interacts with Pax6 and also gets influenced by Catalase, the Pax6 appears influencing immunological surveillance of brain. The alteration in levels of S100β and genes of oxidative stress management by Pax6 also indicates involvement of Pax6-TGF-β-Catalase axis in aging. The microRNA based regulation is also reflected because the miR335 suppresses the Pax6 expression and acts as anti-oncogenic target in glioma. The implication of Pax6 could also be explored towards possibilities of modifying the rate of aging and reversal of aging clock because the Pax6 interacts with p53 and gets altered during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora A, McKay GJ, Simpson DA (2007) Prediction and verification of miRNA expression in human and rat retinas. Invest Ophthalmol Vis Sci 48:3962–3967

    Article  PubMed  Google Scholar 

  • Barone E, Cenini G, DiDomenico F, Noel T, Wang C, perluigi M, StClair DK, Butterfield DA (2015) Basal brain oxidative and nitrosative stress levels are finely regulated by interplay between superoxide dismutase2 and p 53. Neurosci Res 93:1728–1739

    Google Scholar 

  • Bastien-Dionne PO, David LS, Parent A, Saghatelyan A (2010) Role of sensory activity on chemospecific populations of interneurons in the adult olfactory bulb. J Comp Neurol. 518:1847–1861

    Article  CAS  PubMed  Google Scholar 

  • Bhinge A, Poschmann J, Namboori SC, Tian X, JiaHuiLoh S, Traczyk A, Prabhakar S, Stanton LW (2014) MiR-135b is a direct PAX6 target and specifies human neuroectoderm by inhibiting TGF-β/BMP signalling. EMBO J 33:1271–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop KM, Rubenstein JL, O’Leary DD (2002) Distinct actions of Emx1, Emx2 and Pax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22:7627–7638

    CAS  PubMed  Google Scholar 

  • Bohlen V (2010) Dendritic spine abnormalities in mental retardation. Cell Tissue Res 342:317–323

    Article  Google Scholar 

  • Brian TW, Poala ST (2003) Theories of aging. J Appl Physiol 95:1706–1716

    Article  Google Scholar 

  • Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, Mastick GS, Ashery-Padan R, Saghatelyan A, Berninger B, Gotz M (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28:6439–6452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caraci F, Gulisano W, Guida CA, Inpellizzeri AA, Drago F, Puzzo D, Palmeri A (2015) A key role for TGF-β1 in hippocampal synaptic plasticity and memory. Sci Rep 5:1–10

    Article  Google Scholar 

  • Carrasco GE, Arrizabalago O, Serrano M, Lovell BR, Matheu A (2015) Increased gene dosage of Ink4/Arf and p53 delays age-associated central nervous system functional decline. Aging Cell 14:710–714

    Article  Google Scholar 

  • Chamberlain CG, Mansfield KJ, Cerra A (2009) Glutathione and catalase suppress TGFβ-induced cataract-related changes in cultured rat lenses and lens epithelial explants. Mol Vis 15:895–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Cao H, Chen Z, Ma Z, Wan X, Peng R, Jiang B (2014) PAX6, a novel target of miR-335, inhibits cell proliferation and invasion in glioma cells. Mol Med Rep 10:399–404

    CAS  PubMed  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bleser PJ, Xu G, Rombouts K, Rogiers V, Geerts A (1999) Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem 274:33881–33887

    Article  PubMed  Google Scholar 

  • De Chevigny A, Coré N, Follert P, Gaudin M, Barbry P, Béclin C, Cremer H (2012) miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons. Nat Neurosci 15:1120–1126

    Article  PubMed  Google Scholar 

  • De Haan G, Van Zant G (1999) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93:3294–3301

    PubMed  Google Scholar 

  • Dellovade TL, Pfaff DW, Schwanzel-Fukuda M (1998) Olfactory bulb development is altered in small-eye (Sey) mice. J Comp Neuro 402:402–418

    Article  CAS  Google Scholar 

  • Dodds C (2006) Physiology of ageing. Anaesthea Intense Care Med 7:456–458

    Article  Google Scholar 

  • Engelkamp D, Rashbass P, Seawrigth A, Van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    CAS  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Incidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Develop 128:92–105

    Article  CAS  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    CAS  PubMed  Google Scholar 

  • Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) Pax6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central-nervous-system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  • Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 5:1031–1044

    Article  Google Scholar 

  • Haba H, Nomura T, Suto F, Osumi N (2009) Subtype-specific reduction of olfactory bulb interneurons in Pax6 heterozygous mutant mice. Neurosci Res 65:115–121

    Article  Google Scholar 

  • Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Gotz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872

    Article  CAS  PubMed  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561

    Article  CAS  PubMed  Google Scholar 

  • Harrison D, Astle C, Stone M (1989) Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol 142:3833–3840

    CAS  PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 4:308–315

    Article  Google Scholar 

  • Kanungo MS (1975) A model for aging. J Theor Biol 53:253–261

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Fukuda T, Kubo K, Horie M, Uyemura K, Takeuchi K, Osumi N, Eto K, Kawamura K (1999) Pax-6 is required for thalamocortical pathway formation in fetal rats. J Comp Neuro 408:147–160

    Article  CAS  Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JLR, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003

    Article  CAS  PubMed  Google Scholar 

  • Kredo-Russo S, Mandelbaum AD, Ness A et al (2012) Pancreas-enriched miRNA refines endocrine cell differentiation. Development 139:3021–3031

    Article  CAS  PubMed  Google Scholar 

  • Kroll TT, O’Leary DD (2005) Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc Natl Acad Sci 102:7374–7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske D, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nautre. doi:10.1038/nature14432

    Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–889

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Mastick GS, Davis NM, Andrew GL, Easter SS (1997) Pax6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124:1985–1997

    CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Gorlov IP, Chao LY, Singh S, Saunders GF (2002) PAX6, paired domain influences sequence recognition by the homeodomain. J Biol Chem 277:49488–49494

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Maurya SK, Srivastava K, Shukla S, Mishra R (2015) Pax6 influence expression patterns of genes involved in neurodegeneration. Annals of Neuroscience 22:26–231

    Article  Google Scholar 

  • Nacher J, Varea E, Blasco-Ibanez JM, Castillo-Gomez E, Crespo C, Martinez-Guijarro FJ, Mcewen BS (2005) Expression of the transcription factor Pax6 in the adult rat dentate gyrus. J Neurosci Res 81:753–761

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Plachta N, Allen ND, Pinto L, Gotz M, Barde YA (2007) Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1:529–540

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Haba H, Osumi N (2007) Role of a transcription factor Pax6 in the developing vertebrate olfactory system. Dev Growth Differ 49:683–686

    Article  CAS  PubMed  Google Scholar 

  • Pang WW, Price AE, Sahoo D, Beerman I, Maloney JW, Rossi JD, Schrier LS, Weissman LI (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci 108:20012–20017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501:825–836

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Maoz BB, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Invest 123:958–965

    Article  Google Scholar 

  • Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31:3407–3422

    Article  CAS  PubMed  Google Scholar 

  • Shubham K, Mishra R (2012) Pax6 interacts with SPARC and TGF-β in murine eyes. Mol Vis 18:951–956

    PubMed  PubMed Central  Google Scholar 

  • Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C, Stevens JM, Kendall BE, Shorvon SD, Hanson IM, Moore AT, Van Heyningen V (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    CAS  PubMed  Google Scholar 

  • Stoykova A, Treichel D, Hallonet M, Gruss P (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J Neurosci 20:8042–8050

    CAS  PubMed  Google Scholar 

  • Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain–bad news for neurons? Front Biosci 13:3423–3438

    Article  CAS  PubMed  Google Scholar 

  • Tesseur I, Wyss-Coray T (2006) A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models. Curr Alzheimer Res 3:505–513

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Rando L, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    Article  Google Scholar 

  • Tichauer JE, Flores B, Soler B, Eugenín-von Bernhardi L, Ramírez G, Von Bernhardi R (2014) Age-dependent changes on TGFbeta1 Smad3 pathway modify the pattern of microglial cell activation. Brain Behav Immun 37:187–196

    Article  CAS  PubMed  Google Scholar 

  • Tole S, Remedios R, Saha B, Stoykova A (2005) Selective requirement of pax6, but not Emx2, in the specification and development of several nuclei of the amygdaloid complex. J Neurosci 25:2753–2760

    Article  CAS  PubMed  Google Scholar 

  • Tripathi R, Mishra R (2010) Interaction of Pax6 with SPARC and p53 in brain of mice indicates Smad3 dependent auto-regulation. J Mol Neurosci 41:397–403

    Article  CAS  PubMed  Google Scholar 

  • Tripathi R (2012) Studies on expression and interaction of Pax6 with p 53 and SPARC in brain of aging mice, Ph.D. thesis, Banaras Hindu University, Varanasi

    Google Scholar 

  • Tripathi R, Mishra R (2012) Aging-associated modulation in the expression of Pax6 in mouse brain. Cell Mol Neurobiol 32:209–218

    Article  CAS  PubMed  Google Scholar 

  • Tuoc TC, Radyushkin K, Tonchev AB, Piñon MC, Ashery-Padan R, Molnar Z, Davidoff MS, Stoykova A (2009) Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci 26:8335–8349

    Article  Google Scholar 

  • Weinert BT, Timiras PS (2003) Theories of aging. J Appl Physiol 95:1706–1716

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M (2001) Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 128:3133–3144

    CAS  PubMed  Google Scholar 

  • Yasuda T, Kajimoto Y, Fujitani Y, Watada H, Yamamoto S, Watarai T, Umayahara Y, Matsuhisa M, Gorogawa S, Kuwayama Y, Tano Y, Yamasaki Y, Hori M (2002) PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes 51:224–230

    Article  CAS  PubMed  Google Scholar 

  • Yousef H, Condoy MJ, Morgenthalar A, Schlesinger C, Buqaj L, Paliwal P, Greer C, Conboy IM, Schaffer D (2015) Systemic attenuation of TGF-beta pathway by single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget 6:11959–11978

    Article  PubMed  PubMed Central  Google Scholar 

  • Zechel S, Werner S, Unsicker K, Halbach O (2010) Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist 4:357–373

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge financial support from the ICMR (54/2/CFP/GER/2011-NCD-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnikant Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Maurya, S.K., Tripathi, R., Mishra, S., Mishra, R. (2017). Expression and Regulation of Pax6 in Brain of Aging Mice. In: Rath, P., Sharma, R., Prasad, S. (eds) Topics in Biomedical Gerontology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2155-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2155-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2154-1

  • Online ISBN: 978-981-10-2155-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics