Skip to main content

Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Abstract

Clays have been one of the more important industrial minerals; and with the recent advent of nanotechnology, they have found multifarious applications and in each application, nanoclays help to improve the quality of product, economize on the cost and saves environment. The chapter describes key characteristics of nanoclays and their classification on the basis of the arrangement of “sheets” in their basic structural unit “layer”. Major groups include kaolin–serpentine, pyrophyllite-talc, smectite, vermiculite, mica and Chlorite. The structural, morphological and physicochemical properties of halloystite and montmorillonite nanoclays, representative of the 1:1 and 2:1 layer groups, respectively, are discussed as well. After briefly introducing the surface modification of clay minerals by modifying or functionalizing their surfaces and their incorporation into polymer matrices to develop polymer/clay nanocomposites, techniques that are being employed to characterize these nanoclays, in general, and the sample preparation for these techniques, in particular, are also reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, M., Afzaal, M., Ismail, Z., Ahmad, A., Nazir, M., Bhat, A.: Comparative study on structural modification of Ceiba pentandra for oil sorption and palm oil mill effluent treatment. Desalin. Water Treat. 54, 3044–3053 (2015)

    Article  Google Scholar 

  • Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R 28, 1–63 (2000)

    Article  Google Scholar 

  • Ambre, A.H., Katti, K.S., Katti, D.R.: Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol. Eng. Med. 1, 031013 (2010)

    Article  Google Scholar 

  • Arora, A., Padua, G.: Review: nanocomposites in food packaging. J. Food Sci. 75, R43–R49 (2010)

    Article  Google Scholar 

  • Azeredo, H.M.C.D.: Nanocomposites for food packaging applications. Food Res. Int. 42, 1240–1253 (2009). doi:10.1016/j.foodres.2009.03.019

    Article  Google Scholar 

  • Bertini, F., Canetti, M., Audisio, G., Costa, G., Falqui, L.: Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym. Degrad. Stab. 91, 600–605 (2006)

    Article  Google Scholar 

  • Bhattacharya, S., Aadhar, M.: Studies on preparation and analysis of organoclay nano particles. Res. J. Eng. Sci. 3, 10 (2014)

    Google Scholar 

  • Bordes, P., Pollet, E., Avérous, L.: Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125–155 (2009)

    Article  Google Scholar 

  • Carretero, M.I., Pozo, M.: Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl. Clay Sci. 46, 73–80 (2009)

    Article  Google Scholar 

  • Carretero, M.I., Pozo, M.: Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II. Active ingredients. Appl Clay Sci. 47, 171–181 (2010)

    Article  Google Scholar 

  • Cui, L., Paul, D.: Polymer nanocomposites from organoclays: Structure and properties. Paper presented at the Macromol Sy (2011)

    Google Scholar 

  • Dadbin, S., Noferesti, M., Frounchi, M.: Oxygen Barrier LDPE/LLDPE/Organoclay Nano‐Composite Films for Food Packaging. Paper presented at the Macromol Sy (2008)

    Google Scholar 

  • Du, M., Guo, B., Jia, D.: Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 59, 574–582 (2010)

    Google Scholar 

  • Duncan, T.V.: Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011)

    Article  Google Scholar 

  • Durmuş, A., Woo, M., Kaşgöz, A., Macosko, C.W., Tsapatsis, M.: Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur. Polym. J. 43, 3737–3749 (2007)

    Article  Google Scholar 

  • Echegoyen, Y., Rodríguez, S., Nerín, C.: Nanoclay migration from food packaging materials. Food Addit Contam. Part A (2016)

    Google Scholar 

  • Fernandes, F.M., Baradari, H., Sanchez, C.: Integrative strategies to hybrid lamellar compounds: an integration challenge. Appl. Clay Sci. 100, 2–21 (2014). doi:10.1016/j.clay.2014.05.013

    Article  Google Scholar 

  • Floody, M.C., Theng, B., Reyes, P., Mora, M.: Natural nanoclays: applications and future trends–a Chilean perspective. Clay Miner. 44, 161–176 (2009)

    Article  Google Scholar 

  • Garrido-Ramírez, E., Theng, B., Mora, M.: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl. Clay Sci. 47, 182–192 (2010)

    Article  Google Scholar 

  • Giannakas, A., Spanos, C., Kourkoumelis, N., Vaimakis, T., Ladavos, A.: Preparation, characterization and water barrier properties of PS/organo-montmorillonite nanocomposites. Eur. Polym. J. 44, 3915–3921 (2008)

    Article  Google Scholar 

  • Goettler, L., Lee, K., Thakkar, H.: Layered silicate reinforced polymer nanocomposites: development and applications. Polym. Rev. 47, 291–317 (2007)

    Article  Google Scholar 

  • Grunlan, J.C., Grigorian, A., Hamilton, C.B., Mehrabi, A.R.: Effect of clay concentration on the oxygen permeability and optical properties of a modified poly (vinyl alcohol). J. Appl. Polym. Sci. 93, 1102–1109 (2004)

    Article  Google Scholar 

  • Hakamy, A., Shaikh, F., Low, I.: Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Compos. Part B-Eng. 78, 174–184 (2015)

    Article  Google Scholar 

  • Hemati, F., Garmabi, H.: Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties. Can. J. Chem. Eng. 89, 187–196 (2011)

    Article  Google Scholar 

  • Hotta, S., Paul, D.: Nanocomposites formed from linear low density polyethylene and organoclays. Polymer 45, 7639–7654 (2004)

    Article  Google Scholar 

  • Jeong, G., Achterberg, E.P.: Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys. 14, 12415–12428 (2014)

    Article  Google Scholar 

  • Kádár, F., Százdi, L., Fekete, E., Pukánszky, B.: Surface characteristics of layered silicates: influence on the properties of clay/polymer nanocomposites. Langmuir 22, 7848–7854 (2006)

    Article  Google Scholar 

  • Lee, S.M., Tiwari, D.: Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl. Clay Sci. 59–60, 84–102 (2012). doi:10.1016/j.clay.2012.02.006

    Article  Google Scholar 

  • Liu, M., Jia, Z., Jia, D., Zhou, C.: Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39, 1498–1525 (2014)

    Article  Google Scholar 

  • Lvov, Y., Abdullayev, E.: Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog. Polym. Sci. 38, 1690–1719 (2013)

    Article  Google Scholar 

  • Majeed, K., Hassan, A., Abu Bakar, A.: Barrier, Biodegradation, and mechanical properties of (Rice husk)/(Montmorillonite) hybrid filler‐filled low‐density polyethylene nanocomposite films. J. Vinyl and Addit. Technol. (2015)

    Google Scholar 

  • Majeed, K., Hassan, A., Bakar, A., Jawaid, M.: Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J. Thermoplast. Compos. 0892705714554492 (2014)

    Google Scholar 

  • Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H.P. S., Salema, A.A., Inuwa, I.: Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391–410 (2013). doi:http://dx.doi.org/10.1016/j.matdes.2012.10.044

    Google Scholar 

  • Mitra, G.B.: Spiral structure of 7 Å halloysite: mathematical models. Clay Clay Miner. 61, 499–507 (2013)

    Article  Google Scholar 

  • Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E., Krasnikowa, N.: Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur. Polym. J. 41, 1115–1122 (2005)

    Article  Google Scholar 

  • Murray, H.H.: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17, 207–221 (2000)

    Article  Google Scholar 

  • Muthu, R.N., Rajashabala, S., Kannan, R.: Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renew. Energ. 90, 554–564 (2016)

    Article  Google Scholar 

  • Nagendrappa, G.: Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138 (2011)

    Article  Google Scholar 

  • Nazarenko, S., Meneghetti, P., Julmon, P., Olson, B., Qutubuddin, S.: Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym. Sci. Polym. Phys. 45, 1733–1753 (2007)

    Article  Google Scholar 

  • Ouellet-Plamondon, C., Lynch, R.J., Al-Tabbaa, A.: Comparison between granular pillared, organo-and inorgano–organo-bentonites for hydrocarbon and metal ion adsorption. Appl. Clay Sci. 67, 91–98 (2012)

    Article  Google Scholar 

  • Pasbakhsh, P., Churchman, G.J., Keeling, J.L.: Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47–57 (2013)

    Article  Google Scholar 

  • Patel, H.A., Somani, R.S., Bajaj, H.C., Jasra, R.V.: Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. B Mater. Sci. 29, 133–145 (2006)

    Article  Google Scholar 

  • Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008). doi:10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  • Pavlidou, S., Papaspyrides, C.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  Google Scholar 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  • Sanchez-Garcia, M., Gimenez, E., Lagaron, J.: Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J. Plast. Film Sheeting 23, 133–148 (2007)

    Article  Google Scholar 

  • Santos, K., Liberman, S., Oviedo, M., Mauler, R.: Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Compos. Part A-Appl. S 40, 1199–1209 (2009)

    Article  Google Scholar 

  • Shahidi, S., Ghoranneviss, M.: Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J. Fusion Energ. 33, 88–95 (2014)

    Article  Google Scholar 

  • Silvestre, C., Duraccio, D., Cimmino, S.: Food packaging based on polymer nanomaterials. Prog. Polym. Sci. 36, 1766–1782 (2011)

    Article  Google Scholar 

  • Su, F.-H., Huang, H.-X., Zhao, Y.: Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos. Part B-Eng. 42, 421–428 (2011)

    Article  Google Scholar 

  • Suresh, R., Borkar, S., Sawant, V., Shende, V., Dimble, S.: Nanoclay drug delivery system. Int. J. Pharm. Sci. Nanotechnol. 3, 901–905 (2010)

    Google Scholar 

  • Tabuani, D., Ceccia, S., Camino, G.: Polypropylene nanocomposites, study of the influence of the nanofiller nature on morphology and material properties. Paper presented at the Macromol Sy (2011)

    Google Scholar 

  • Tjong, S.: Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R 53, 73–197 (2006)

    Article  Google Scholar 

  • Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2804–2814 (2008)

    Article  Google Scholar 

  • Yah, W.O., Xu, H., Soejima, H., Ma, W., Lvov, Y., Takahara, A.: Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J. Am. Chem. Soc. 134, 12134–12137 (2012). doi:10.1021/ja303340f

    Article  Google Scholar 

  • Yoon, K.-B., Sung, H.-D., Hwang, Y.-Y., Noh, S.K., Lee, D.-H.: Modification of montmorillonite with oligomeric amine derivatives for polymer nanocomposite preparation. Appl. Clay Sci. 38, 1–8 (2007)

    Article  Google Scholar 

  • Yu, F., Deng, H., Bai, H., Zhang, Q., Wang, K., Chen, F., Fu, Q.: Confine clay in an alternating multilayered structure through injection molding: a simple and efficient route to improve barrier performance of polymeric materials. ACS Appl. Mater. Interfaces 7, 10178–10189 (2015)

    Article  Google Scholar 

  • Yuan, G., Wu, L.: Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci. Technol. Adv. Mater. 8, 60–62 (2007)

    Article  Google Scholar 

  • Yuan, P., Southon, P.D., Liu, Z., Green, M.E., Hook, J.M., Antill, S.J., Kepert, C.J.: Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 15742–15751 (2008)

    Article  Google Scholar 

  • Yuan, P., Tan, D., Annabi-Bergaya, F.: Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci. 112, 75–93 (2015)

    Article  Google Scholar 

  • Zanetti, M., Costa, L.: Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer 45, 4367–4373 (2004)

    Article  Google Scholar 

  • Zhang, D., Zhou, C.-H., Lin, C.-X., Tong, D.-S., Yu, W.-H.: Synthesis of clay minerals. Appl. Clay Sci. 50, 1–11 (2010). doi:10.1016/j.clay.2010.06.019

    Article  Google Scholar 

  • Zhang, J., Hereid, J., Hagen, M., Bakirtzis, D., Delichatsios, M., Fina, A., Bourbigot, S.: Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf. J. 44, 504–513 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaliq Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Nazir, M.S., Mohamad Kassim, M.H., Mohapatra, L., Gilani, M.A., Raza, M.R., Majeed, K. (2016). Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites. In: Jawaid , M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-1953-1_2

Download citation

Publish with us

Policies and ethics