Skip to main content

Control of a Magnus Effect-Based Airborne Wind Energy System

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter studies the control of an airborne wind energy system that is operated in pumping cycles and uses a rotating cylinder to provide aerodynamic lift with the Magnus effect. The proposed control strategy aims at stabilizing the output power production which can be used for off-grid applications, for example. In a first case study, the wind tunnel setup of a small-scale system is investigated experimentally and by means of numerical simulation. The proposed controller works well to effectively manage the tether length. However, a comparison of the results demonstrates the penalizing effects of wind turbulence with a factor of three difference in power production. In a second case study, the control strategy is used for the numerical simulation of a medium scale prototype with a potential power rating of 50 kW. The results show that the control strategy is very effective to track the desired power production even in the presence of wind velocity fluctuations. In a third case study, the scalability of the system is evaluated by applying the control scheme to the numerical simulation of a MW scale platform. The results show that the system with a span equal to the diameter of a conventional wind turbine can generate an equivalent amount of power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ampyx Power B.V. http://www.ampyxpower.com/. Accessed 24 May 2013

  2. Canale, M., Fagiano, L., Milanese, M.: KiteGen: A revolution in wind energy generation. Energy 34(3), 355–361 (2009). https://doi.org/10.1016/j.energy.2008.10.003

  3. Cherubini, A., Papini, A., Vertechy, R., Fontana, M.: Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews 51, 1461–1476 (2015). https://doi.org/10.1016/j.rser.2015.07.053

  4. Enerkite GmbH: Products. http://www.enerkite.de/en/products. Accessed 30 Oct 2015

  5. GIPSA-lab. http://www.gipsa-lab.grenoble-inp.fr/recherche/plates-formes.php?id_plateforme=70. Accessed 30 Oct 2015

  6. Hably, A., Dumon, J.: Éoliennes Volantes: Airborne Wind Energy Activities at the Gipsa-Lab. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 41, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/5068e380738143bbb8cc8aa59fe677481d

  7. Hably, A., Lozano, R., Alamir, M., Dumon, J.: Observer-based control of a tethered wing wind power system: indoor real-time experiment. In: Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013. https://doi.org/10.1109/ACC.2013.6580368

  8. Johnston, I.: Bill Gates calls for Manhattan Project-style renewable energy drive. The Independent, 26 June 2015. http://www.independent.co.uk/news/people/bill-gates-calls-formanhattan-project-style-renewable-energy-drive-10346752.html Accessed 30 Oct 2015

  9. Loctier, D.: The search for a high flying clean energy generator. http://www.euronews.com/2016/02/22/the-search-for-a-high-flying-clean-energy-generator (2016). Accessed 6 Dec 2017

  10. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). https://doi.org/10.2514/3.48021

  11. Lozano, R., Dumon, J., Hably, A., Alamir, M.: Energy production control of an experimental kite system in presence of wind gusts. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2452–2459, IEEE, Tokyo, Japan, 3–7 Nov 2013. https://doi.org/10.1109/IROS.2013.6696701

  12. Makani Power/Google. http://www.google.com/makani. Accessed 14 Jan 2016

  13. Milutinović, M., Čorić, M., Deur, J.: Operating cycle optimization for a Magnus effect-based airborne wind energy system. Energy Conversion and Management 90, 154–165 (2015). https://doi.org/10.1016/j.enconman.2014.10.066

  14. Omnidea, Lda. http://www.omnidea.net/hawe/. Accessed 28 June 2013

  15. Omnidea, Lda: Omnidea High Altitude Wind Energy with Magnus effect. https://www.youtube.com/watch?v=Ne_aEa__svo (2015). Accessed 6 Dec 2017

  16. Pardal, T., Silva, P.: Analysis of Experimental Data of a Hybrid System Exploiting the Magnus Effect for Energy from High Altitude Wind. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 30–31, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/e51a679525fe491990de3a55a912f79d1d

  17. Penedo, R. J. M., Pardal, T. C. D., Silva, P. M. M. S., Fernandes, N. M., Fernandes, T. R. C.: High Altitude Wind Energy from a Hybrid Lighter-than-Air Platform Using the Magnus Effect. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 29, pp. 491–500. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_29

  18. Perković, L., Silva, P., Ban, M., Kranjčević, N., Duić, N.: Harvesting high altitude wind energy for power production: The concept based on Magnus′ effect. Applied Energy 101, 151–160 (2013). https://doi.org/10.1016/j.apenergy.2012.06.061

  19. Seifert, J.: A review of the Magnus effect in aeronautics. Progress in Aerospace Sciences 55, 17–45 (2012). https://doi.org/10.1016/j.paerosci.2012.07.001

  20. Station Météo Bard. http://www.meteobard.fr/. Accessed 30 Oct 2015

  21. White, F.: Fluid mechanics. 8th ed. McGraw-Hill Education (2015)

    Google Scholar 

Download references

Acknowledgements

The authors of this chapter would like to thank the technical staff of Gipsalab and the trainees Azzam Alwann, Alexandre Kajiyama and Pierre Estadieu. They also thank the editor and the anonymous reviewers for their constructive comments, which helped to improve the quality of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hably .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hably, A., Dumon, J., Smith, G., Bellemain, P. (2018). Control of a Magnus Effect-Based Airborne Wind Energy System. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics