Skip to main content

Genotoxicity Detection at the Molecular Level in Food Safety Assessment: Conventional Methods and Developments

  • Chapter
  • First Online:

Abstract

Genotoxicity detection is an important part of food safety assessment because many food contaminants are genotoxic. Through the regulation of gene expression, causing DNA damage, inducing gene mutation, and influencing DNA methylation, such contaminants pose a severe threat to the health of human and animals and can even induce cancer. The development of PCR technology makes it possible and easier to detect genotoxicity at the molecular level. Of the various genotoxic pathways, gene mutation, DNA methylation, and miRNA regulation are issues of particular concern. This chapter therefore focuses on the technologies for the detection of gene mutation, DNA methylation, and miRNA and reviews the conventional methods and developments in these fields. Direct DNA sequencing, PCR-SSCP, PCR-RFLP, ASO-PCR, biosensors, SNP detection, and other methods are discussed in the context of gene mutation detection. With regard to DNA methylation detection, techniques for both genome-wide methylation and gene-specific methylation are reviewed. In the discussion of miRNA detection, we introduce two of the most easily accessible and widely used methods for this purpose, namely, poly(A)-tailing PCR and stem-loop PCR, as well as innovative techniques such as biosensors. Finally, the prospects under development in these fields are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goto T, Wicklow DT, Ito Y. Aflatoxin and cyclopiazonic acid production by a Sclerotium-producing Aspergillus tamarii strain. Appl Environ Microb. 1996;62(11):4036–8.

    CAS  Google Scholar 

  2. Raiola A, Tenore GC, Manyes L, Meca G, Ritieni A. Risk analysis of main mycotoxins occurring in food for children: an overview. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc. 2015;84:169–80. doi:10.1016/j.fct.2015.08.023.

    Article  CAS  Google Scholar 

  3. Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res Int. 2015;22(18):13772–99. doi:10.1007/s11356-015-4881-0.

    Article  CAS  PubMed  Google Scholar 

  4. Manjanatha MG, Guo LW, Shelton SD, Doerge DR. Acrylamide-induced carcinogenicity in mouse lung involves mutagenicity: cII gene mutations in the lung of big blue mice exposed to acrylamide and glycidamide for up to 4 weeks. Environ Mol Mutagen. 2015;56(5):446–56. doi:10.1002/em.21939.

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Gao J, Huang K, Qi X, Dai Q, Mei X, Xu W. Dynamic changes of global DNA methylation and hypermethylation of cell adhesion-related genes in rat kidneys in response to ochratoxin A. World Mycotoxin J. 2015;8(4):465–76. doi:10.3920/Wmj2014.1795.

    Article  CAS  Google Scholar 

  6. McCarthy A. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem Biol. 2010;17(7):675–6. doi:10.1016/j.chembiol.2010.07.004.

    Article  CAS  PubMed  Google Scholar 

  7. Graham CA, Hill AJ. Introduction to DNA sequencing. Methods Mol Biol. 2001;167:1–12. doi:10.1385/1-59259-113-2:001.

    CAS  PubMed  Google Scholar 

  8. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45. doi:10.1038/nbt1486.

    Article  CAS  PubMed  Google Scholar 

  9. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32. doi:10.1126/science.1117389.

    Article  CAS  PubMed  Google Scholar 

  10. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80. doi:10.1038/nature03959.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong XX, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma CC, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8. doi:10.1126/science.1162986.

    Article  CAS  PubMed  Google Scholar 

  12. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain-reaction. Genomics. 1989;5(4):874–9. doi:10.1016/0888-7543(89)90129-8.

    Article  CAS  PubMed  Google Scholar 

  13. Bosari S, Marchetti A, Buttitta F, Graziani D, Borsani G, Loda M, Bevilacqua G, Coggi G. Detection of p53 mutations by single-strand conformation polymorphisms (SSCP) gel electrophoresis. A comparative study of radioactive and nonradioactive silver-stained SSCP analysis. Diagn Mol Pathol: Am J Surg Pathol B. 1995;4(4):249–55.

    Article  CAS  Google Scholar 

  14. Kurvinen K, Hietanen S, Syrjanen K, Syrjanen S. Rapid and effective detection of mutations in the P53 gene using nonradioactive Single-Strand Conformation Polymorphism (Sscp) Technique Applied on Phastsystem(Tm). J Virol Methods. 1995;51(1):43–53. doi:10.1016/0166-0934(94)00099-3.

    Article  CAS  PubMed  Google Scholar 

  15. Han M, Robinson MA. PCR-SSCP analysis of polymorphism: a simple and sensitive method for detecting differences between short segments of DNA. Methods Mol Biol. 2003;226:327–34. doi:10.1385/1-59259-384-4:327.

    CAS  PubMed  Google Scholar 

  16. Geng RQ, Wang LP. The PCR-SSCP and DNA sequencing methods detecting genetic mutations of EGLN1 gene in different sheep breeds. Indian J Anim Res. 2015;49(1):44–7. doi:10.5958/0976-0555.2015.00009.6.

    Article  Google Scholar 

  17. Nakashima H, Akahoshi M, Tanaka Y. Mutation detection using RT-PCR-RFLP. Methods Mol Biol. 2003;226:319–22. doi:10.1385/1-59259-384-4:319.

    CAS  PubMed  Google Scholar 

  18. Sugio K, Kishimoto Y, Virmani AK, Hung JY, Gazdar AF. K-Ras mutations are a relatively late event in the pathogenesis of lung carcinomas. Cancer Res. 1994;54(22):5811–5.

    CAS  PubMed  Google Scholar 

  19. Mills NE, Fishman CL, Scholes J, Anderson SE, Rom WN, Jacobson DR. Detection of K-Ras oncogene mutations in bronchoalveolar lavage fluid for lung-cancer diagnosis. J Natl Cancer I. 1995;87(14):1056–60. doi:10.1093/jnci/87.14.1056.

    Article  CAS  Google Scholar 

  20. Schuermann M. Detection of K-ras and p53 mutations by “mutant-enriched” PCR-RFLP. Methods Mol Med. 2003;75:325–33.

    CAS  PubMed  Google Scholar 

  21. Ouyang L, Ge C, Wu H, Li S, Zhang H. PCR-RFLP to detect codon 248 mutation in exon 7 of p53 tumor suppressor gene. Biochem Mol Biol Educ: Bimonthly Publ Int Union Biochem Mol Biol. 2009;37(2):106–9. doi:10.1002/bmb.20255.

    Article  CAS  Google Scholar 

  22. Anitha S, Raghunadharao D, Waliyar F, Sudini H, Parveen M, Rao R, Kumar PL. The association between exposure to aflatoxin, mutation in TP53, infection with hepatitis B virus, and occurrence of liver disease in a selected population in Hyderabad, India. Mutat Res-Gen Toxicol Environ. 2014;766:23–8. doi:10.1016/j.mrgentox.2013.12.011.

    Article  CAS  Google Scholar 

  23. Hingorani AD, Brown MJ. A simple molecular assay for the C-1166 variant of the angiotensin-II type-1 receptor gene. Biochem Biophys Res Co. 1995;213(2):725–9. doi:10.1006/bbrc.1995.2190.

    Article  CAS  Google Scholar 

  24. Shibata S, Asano Y, Yokoyama T, Shimoda K, Nakashima H, Okamura S, Niho Y. Analysis of the granulocyte colony-stimulating factor receptor gene structure using PCR-SSCP in myeloid leukemia and myelodysplastic syndrome. Eur J Haematol. 1998;60(3):197–201.

    Article  CAS  PubMed  Google Scholar 

  25. Iwata I, Nagafuchi S, Nakashima H, Kondo S, Koga T, Yokogawa Y, Akashi T, Shibuya T, Umeno Y, Okeda T, Shibata S, Kono S, Yasunami M, Ohkubo H, Niho Y. Association of polymorphism in the NeuroD/BETA2 gene with type 1 diabetes in the Japanese. Diabetes. 1999;48(2):416–9. doi:10.2337/diabetes.48.2.416.

    Article  CAS  PubMed  Google Scholar 

  26. Butler JM, Wilson MR, Reeder DJ. Rapid mitochondrial DNA typing using restriction enzyme digestion of polymerase chain reaction amplicons followed by capillary electrophoresis separation with laser-induced fluorescence detection. Electrophoresis. 1998;19(1):119–24. doi:10.1002/elps.1150190120.

    Article  CAS  PubMed  Google Scholar 

  27. Butler JM, Reeder DJ. Detection of DNA polymorphisms using PCR-RFLP and capillary electrophoresis. In: Capillary electrophoresis of nucleic acids. New York: Humana Press; 2001. p. 49–56.

    Google Scholar 

  28. Mitchelson KR. Overview: the application of capillary electrophoresis for DNA polymorphism analysis. In: Capillary electrophoresis of nucleic acids. New York: Humana Press; 2001. p. 3–26.

    Google Scholar 

  29. Green EK. Allele-specific oligonucleotide PCR. In: PCR mutation detection protocols. New York: Humana Press; 2002. p. 47–50.

    Google Scholar 

  30. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science. 1985;230(4732):1350–4. doi:10.1126/science.2999980.

    Article  CAS  PubMed  Google Scholar 

  31. Ehlen T, Dubeau L. Detection of Ras point mutations by polymerase chain-reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochem Biophys Res Co. 1989;160(2):441–7. doi:10.1016/0006-291x(89)92452-2.

    Article  CAS  Google Scholar 

  32. Green EK, Bain SC, Day PJR, Barnett AH, Charleson F, Jones AF, Walker MR. Detection of human apolipoprotein-E3, apolipoprotein-E2, and apolipoprotein-E4 genotypes by an allele-specific oligonucleotide-primed polymerase chain-reaction assay – development and validation. Clin Chem. 1991;37(7):1263–8.

    CAS  PubMed  Google Scholar 

  33. Liu Z, Kullman SW, Bencic DC, Torten M, Hinton DE. ras oncogene mutations in diethylnitrosamine-induced hepatic tumors in medaka (Oryzias latipes), a teleost fish. Mutat Res. 2003;539(1–2):43–53.

    Article  CAS  PubMed  Google Scholar 

  34. Ashraf S, Noguera NI, Di Giandomenico J, Zaza S, Hasan SK, Lo-Coco F. Rapid detection of IDH2 (R140Q and R172K) mutations in acute myeloid leukemia. Ann Hematol. 2013;92(10):1319–23. doi:10.1007/s00277-013-1868-0.

    Article  CAS  PubMed  Google Scholar 

  35. Jara-Acevedo M, Teodosio C, Sanchez-Munoz L, Alvarez-Twose I, Mayado A, Caldas C, Matito A, Morgado JM, Munoz-Gonzalez JI, Escribano L, Garcia-Montero AC, Orfao A. Detection of the KIT D816V mutation in peripheral blood of systemic mastocytosis: diagnostic implications. Mod Pathol. 2015;28(8):1138–49. doi:10.1038/modpathol.2015.72.

    Article  CAS  PubMed  Google Scholar 

  36. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol. 2001;19(3):253–7. doi:10.1038/85704.

    Article  CAS  PubMed  Google Scholar 

  37. Wang D, Chen G, Wang H, Tang W, Pan W, Li N, Liu F. A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens Bioelectron. 2013;48:276–80. doi:10.1016/j.bios.2013.04.035.

    Article  CAS  PubMed  Google Scholar 

  38. Staiger AM, Ott MM, Parmentier S, Rosenwald A, Ott G, Horn H, Griese EU. Allele-specific PCR is a powerful tool for the detection of the MYD88 L265P mutation in diffuse large B cell lymphoma and decalcified bone marrow samples. Br J Haematol. 2015;171(1):145–8. doi:10.1111/bjh.13369.

    Article  CAS  PubMed  Google Scholar 

  39. Wang T, Liu JH, Zhang J, Wang L, Chen C, Dai PG. A multiplex allele-specific real-time PCR assay for screening of ESR1 mutations in metastatic breast cancer. Exp Mol Pathol. 2015;98(2):152–7. doi:10.1016/j.yexmp2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  40. Sheridan E, Hancock BW, Goyns MH. High-incidence of mutations of the P53 gene detected in ovarian-tumors by the use of chemical mismatch cleavage. Cancer Lett. 1993;68(1):83–9. doi:10.1016/0304-3835(93)90223-V.

    Article  CAS  PubMed  Google Scholar 

  41. Belyakova AA, Yakubovskaya MG, Gasanova VK, Belitsky GA, Dolinnaya NG. Specificity and sensitivity of point mutation detection in tumor suppressor genes via chemical cleavage of mismatches. EJC Suppl. 2007;5(4):84–5. doi:10.1016/S1359-6349(07)70421-4.

    Article  Google Scholar 

  42. Glavac D, Dean M. Applications of heteroduplex analysis for mutation detection in disease genes. Hum Mutat. 1995;6(4):281–7. doi:10.1002/humu.1380060402.

    Article  CAS  PubMed  Google Scholar 

  43. Velasco E, Infante M, Duran M, Esteban-Cardenosa E, Lastra E, Garcia-Giron C, Miner C. Rapid mutation detection in complex genes by heteroduplex analysis with capillary array electrophoresis. Electrophoresis. 2005;26(13):2539–52. doi:10.1002/elps.200410425.

    Article  CAS  PubMed  Google Scholar 

  44. Macek M, Mercier B, Mackova A, Miller PW, Hamosh A, Ferec C, Cutting GR. Sensitivity of the denaturing gradient gel electrophoresis technique in detection of known mutations and novel Asian mutations in CFTR gene. Hum Mutat. 1997;9(2):136–47. doi:10.1002/(Sici)1098-1004(1997)9:2<136::Aid-Humu6>3.0.Co;2-7.

    Article  CAS  PubMed  Google Scholar 

  45. Schwarzova L, Stekrova J, Florianova M, Novotny A, Schneiderova M, Lnenicka P, Kebrdlova V, Kotlas J, Vesela K, Kohoutova M. Novel mutations of the APC gene and genetic consequences of splicing mutations in the Czech FAP families. Fam Cancer. 2013;12(1):35–42. doi:10.1007/s10689-012-9569-8.

    Article  CAS  PubMed  Google Scholar 

  46. Ravnik-Glavac M, Atkinson A, Glavac D, Dean M. DHPLC screening of cystic fibrosis gene mutations. Hum Mutat. 2002;19(4):374–83. doi:10.1002/humu.10065.

    Article  CAS  PubMed  Google Scholar 

  47. Kantorova B, Malcikova J, Smardova J, Pavlova S, Trbusek M, Tom N, Plevova K, Tichy B, Truong S, Diviskova E, Kotaskova J, Oltova A, Patten N, Brychtova Y, Doubek M, Mayer J, Pospisilova S. TP53 mutation analysis in chronic lymphocytic leukemia: comparison of different detection methods. Tumor Biol. 2015;36(5):3371–80. doi:10.1007/s13277-014-2971-0.

    Article  CAS  Google Scholar 

  48. Brookes AJ. The essence of SNPs. Gene. 1999;234(2):177–86. doi:10.1016/S0378-1119(99)00219-X.

    Article  CAS  PubMed  Google Scholar 

  49. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen NP, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–82. doi:10.1126/science.280.5366.1077.

    Article  CAS  PubMed  Google Scholar 

  50. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning ZM, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann NS, Zody MC, Linton L, Lander ES, Altshuler D, Grp ISMW. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409(6822):928–33. doi:10.1038/35057149.

    Article  CAS  PubMed  Google Scholar 

  51. Fukuen S, Fukuda T, Maune H, Ikenaga Y, Yamamoto I, Inaba T, Azuma J. Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics. 2002;12(4):331–4.

    Article  CAS  PubMed  Google Scholar 

  52. Chang HW, Cheng YH, Chuang LY, Yang CH. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping. BMC Bioinforma. 2010;11:173. doi:10.1186/1471-2105-11-173.

    Article  CAS  Google Scholar 

  53. Martins-Lopes P, Zhang H, Koebner R. Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep. 2001;19(2):159–62. doi:10.1007/Bf02772158.

    Article  CAS  Google Scholar 

  54. Sasaki T, Tahira T, Suzuki A, Higasa K, Kukita Y, Baba S, Hayashi K. Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am J Hum Genet. 2001;68(1):214–8. doi:10.1086/316928.

    Article  CAS  PubMed  Google Scholar 

  55. Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320. doi:10.1146/annurev.bioeng.9.060906.152037.

    Article  CAS  PubMed  Google Scholar 

  56. Lustosa Souza CR, Azevedo Shimmoto MM, Vicari P, Mecabo G, Arruda MM, Figueiredo MS. Klotho gene polymorphisms and their association with sickle cell disease phenotypes. Rev Bras Hematol Hemoter. 2015;37(4):275–6. doi:10.1016/j.bjhh.2015.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Petersen DC, Laten A, Zeier MD, Grimwood A, van Rensburg EJ, Hayes VM. Novel mutations and SNPs identified in CCR2 using a new comprehensive denaturing gradient gel electrophoresis assay. Hum Mutat. 2002;20(4):253–9. doi:10.1002/humu.10111.

    Article  CAS  PubMed  Google Scholar 

  58. Chen XW, Yue LJ, Li CG, Li CR, Zhang M, Shi HS. Polymorphisms of thymidylate synthase gene detected by RT-PCR-denaturing gradient gel electrophoresis in children with acute leukemia. Zhongguo Dang Dai Er Ke Za Zhi Chin J Contemp Pediatr. 2009;11(4):251–4.

    CAS  Google Scholar 

  59. Ding C, Jin S. High-throughput methods for SNP genotyping. In: Single nucleotide polymorphisms. New York: Humana Press; 2009. p. 245–54.

    Google Scholar 

  60. Birdsell DN, Vogler AJ, Buchhagen J, Clare A, Kaufman E, Naumann A, Driebe E, Wagner DM, Keim PS. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. Plos One. 2014;9(9). doi:ARTN e107964 10.1371/journal.pone.0107964.

  61. Martinez-Cruz B, Ziegle J, Sanz P, Sotelo G, Anglada R, Plaza S, Comas D, Genographic C. Multiplex single-nucleotide polymorphism typing of the human Y chromosome using TaqMan probes. Investigative Genet. 2011;2:13. doi:10.1186/2041-2223-2-13.

    Article  Google Scholar 

  62. Asari M, Omura T, Maseda C, Shiono H, Tasaki Y, Matsubara K, Shimizu K. Enhanced discrimination of single nucleotide polymorphisms using 3′ nucleotide differences in ligase detection reaction probes. Mol Cell Probes. 2010;24(6):381–6. doi:10.1016/j.mcp.2010.08.005.

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y, Yang ML, Xiang Y, Yuan R, Chai YQ. Ligase chain reaction amplification for sensitive electrochemiluminescent detection of single nucleotide polymorphisms. Anal Chim Acta. 2013;796:1–6. doi:10.1016/j.aca.2013.07.057.

    Article  CAS  PubMed  Google Scholar 

  64. Alderborn A, Kristofferson A, Hammerling U. Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res. 2000;10(8):1249–58. doi:10.1101/Gr.10.8.1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lavebratt C, Sengul S. Single nucleotide polymorphism (SNP) allele frequency estimation in DNA pools using Pyrosequencing (TM). Nat Protoc. 2006;1(6):2573–82. doi:10.1038/nprot.2006.442.

    Article  CAS  PubMed  Google Scholar 

  66. Underwood JL, Stamper RL, Kukreja RC, Samson V. dHPLC analysis of single nucleotide polymorphism in the MYOC/TIGR gene. Mol Biol Cell. 2001;12:125a–6.

    Google Scholar 

  67. Hoogendoorn B, Norton N, Kirov G, Williams N, Hamshere ML, Spurlock G, Austin J, Stephens MK, Buckland PR, Owen MJ, O’Donovan MC. Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Hum Genet. 2000;107(5):488–93. doi:10.1007/s004390000397.

    Article  CAS  PubMed  Google Scholar 

  68. Duan XR, Liu LB, Feng FD, Wang S. Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms. Acc Chem Res. 2010;43(2):260–70. doi:10.1021/ar9001813.

    Article  CAS  PubMed  Google Scholar 

  69. Syvanen AC. Toward genome-wide SNP genotyping. Nat Genet. 2005;37:S5–10. doi:10.1038/ng1558.

    Article  PubMed  CAS  Google Scholar 

  70. Deng HY, Zhang XE, Mang Y, Zhang ZP, Zhou YF, Liu Q, Lu HB, Fu ZJ. Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism. Biosens Bioelectron. 2004;19(10):1277–83. doi:10.1016/j.bios.2003.11.022.

    Article  CAS  PubMed  Google Scholar 

  71. Rush LJ, Plass C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem. 2002;307(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  72. Reik W, Collick A, Norris ML, Barton SC, Surani MA. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987;328(6127):248–51. doi:10.1038/328248a0.

    Article  CAS  PubMed  Google Scholar 

  73. Onyango P, Jiang S, Uejima H, Shamblott MJ, Gearhart JD, Cui H, Feinberg AP. Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A. 2002;99(16):10599–604. doi:10.1073/pnas.152327599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tost J, Dunker J, Gut IG. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques. 2003;35(1):152–6.

    CAS  PubMed  Google Scholar 

  75. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9(16):2395–402. doi:10.1093/hmg/9.16.2395.

    Article  CAS  PubMed  Google Scholar 

  76. Dong Y, Zhao H, Li H, Li X, Yang S. DNA methylation as an early diagnostic marker of cancer (review). Biomed Rep. 2014. doi:10.3892/br.2014.237.

    Google Scholar 

  77. Tucker KL. Methylated cytosine and the brain: a new base for neuroscience. Neuron. 2001;30(3):649–52.

    Article  CAS  PubMed  Google Scholar 

  78. Gardinergarden M, Frommer M. Cpg islands in vertebrate genomes. J Mol Biol. 1987;196(2):261–82. doi:10.1016/0022-2836(87)90689-9.

    Article  CAS  Google Scholar 

  79. Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics. 1992;13(4):1095–107.

    Article  CAS  PubMed  Google Scholar 

  80. Yin H, Blanchard KL. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. Blood. 2000;95(1):111–9.

    CAS  PubMed  Google Scholar 

  81. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7(4):536–40. doi:10.1038/ng0894-536.

    Article  CAS  PubMed  Google Scholar 

  82. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58(23):5489–94.

    CAS  PubMed  Google Scholar 

  83. Toyota M, Issa JP. CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol. 1999;9(5):349–57. doi:10.1006/scbi.1999.0135.

    Article  CAS  PubMed  Google Scholar 

  84. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, Wu M, D’Alo F, Melnick A, Leone G, Ebralidze KK, Pradhan S, Rinn JL, Tenen DG. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503(7476):371–6. doi:10.1038/nature12598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, Yang H, Wang T, Lee AY, Swanson SA, Zhang J, Zhu Y, Kim A, Nery JR, Urich MA, Kuan S, Yen CA, Klugman S, Yu P, Suknuntha K, Propson NE, Chen H, Edsall LE, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung WY, Chi NC, Antosiewicz-Bourget JE, Slukvin I, Stewart R, Zhang MQ, Wang W, Thomson JA, Ecker JR, Ren B. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell. 2013;153(5):1134–48. doi:10.1016/j.cell.2013.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5. doi:10.1038/366362a0.

    Article  CAS  PubMed  Google Scholar 

  87. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–61. doi:10.1073/pnas.0803055105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J. Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging. 2010;31(12):2025–37. doi:10.1016/j.neurobiolaging.2008.12.005.

    Article  CAS  PubMed  Google Scholar 

  89. Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science. 1981;211(4480):393–6.

    Article  CAS  PubMed  Google Scholar 

  90. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Aspects Med. 2013;34(4):883–901. doi:10.1016/j.mam.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  91. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, Voisey J. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry. 2014;4:e339. doi:10.1038/tp.2013.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2 Suppl 1:S4–11. doi:10.1038/ncponc0354.

    Article  CAS  PubMed  Google Scholar 

  93. Son JW, Jeong KJ, Jean WS, Park SY, Jheon S, Cho HM, Park CG, Lee HY, Kang J. Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer Lett. 2011;311(1):29–37. doi:10.1016/j.canlet.2011.06.021.

    Article  CAS  PubMed  Google Scholar 

  94. Szyf M. DNA methylation signatures for breast cancer classification and prognosis. Genome Med. 2012;4(3):26. doi:10.1186/gm325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hong L, Ahuja N. DNA methylation biomarkers of stool and blood for early detection of colon cancer. Genet Test Mol Biomarkers. 2013;17(5):401–6. doi:10.1089/gtmb.2012.0478.

    Article  CAS  PubMed  Google Scholar 

  96. Andres G, Ashour N, Sanchez-Chapado M, Ropero S, Angulo JC. The study of DNA methylation in urological cancer: present and future. Actas Urol Esp. 2013;37(6):368–75. doi:10.1016/j.acuro.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  97. Bondurant AE, Huang Z, Whitaker RS, Simel LR, Berchuck A, Murphy SK. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol. 2011;123(3):581–7. doi:10.1016/j.ygyno.2011.08.029.

    Article  CAS  PubMed  Google Scholar 

  98. Renner M, Wolf T, Meyer H, Hartmann W, Penzel R, Ulrich A, Lehner B, Hovestadt V, Czwan E, Egerer G, Schmitt T, Alldinger I, Renker EK, Ehemann V, Eils R, Wardelmann E, Buttner R, Lichter P, Brors B, Schirmacher P, Mechtersheimer G. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas. Genome Biol. 2013;14(12):r137. doi:10.1186/gb-2013-14-12-r137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Ammerpohl O, Haake A, Pellissery S, Giefing M, Richter J, Balint B, Kulis M, Le J, Bibikova M, Drexler HG, Seifert M, Shaknovic R, Korn B, Kuppers R, Martin-Subero JI, Siebert R. Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia. 2012;26(1):185–8. doi:10.1038/leu.2011.194.

    Article  CAS  PubMed  Google Scholar 

  100. Schoofs T, Berdel WE, Muller-Tidow C. Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia. 2014;28(1):1–14. doi:10.1038/leu.2013.242.

    Article  CAS  PubMed  Google Scholar 

  101. Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet. 2002;32(3):453–8. doi:10.1038/ng1007.

    Article  CAS  PubMed  Google Scholar 

  102. Friso S, Choi SW, Dolnikowski GG, Selhub J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem. 2002;74(17):4526–31.

    Article  CAS  PubMed  Google Scholar 

  103. Hu CW, Lee H, Chen JL, Li YJ, Chao MR. Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients. Anal Bioanal Chem. 2013;405(27):8859–69. doi:10.1007/s00216-013-7305-3.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Z, Chen CQ, Manev H. Enzymatic regional methylation assay for determination of CpG methylation density. Anal Chem. 2004;76(22):6829–32. doi:10.1021/ac049114+.

    Article  CAS  PubMed  Google Scholar 

  105. Frigola J, Ribas M, Risques RA, Peinado MA. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res. 2002;30(7):e28.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Huang TH, Laux DE, Hamlin BC, Tran P, Tran H, Lubahn DB. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res. 1997;57(6):1030–4.

    CAS  PubMed  Google Scholar 

  107. Porter JR, Stains CI, Segal DJ, Ghosh I. Split beta-lactamase sensor for the sequence-specific detection of DNA methylation. Anal Chem. 2007;79(17):6702–8. doi:10.1021/ac071163+.

    Article  CAS  PubMed  Google Scholar 

  108. Nygren AO, Ameziane N, Duarte HM, Vijzelaar RN, Waisfisz Q, Hess CJ, Schouten JP, Errami A. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 2005;33(14):e128. doi:10.1093/nar/gni127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Dobrovic A, Bianco T, Tan LW, Sanders T, Hussey D. Screening for and analysis of methylation differences using methylation-sensitive single-strand conformation analysis. Methods. 2002;27(2):134–8.

    Article  CAS  PubMed  Google Scholar 

  110. Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980;8(20):4763–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deng D, Deng G, Lu Y. Analysis of the methylation in CpG island by denaturing high-performance liquid chromatography. Zhonghua Yi Xue Za Zhi. 2001;81(3):158–61.

    CAS  PubMed  Google Scholar 

  112. Huang DH, Yang Q, Jin SX, Deng QC, Zhou P. Determination of global DNA methylation level by capillary electrophoresis using octyl-modified quaternized cellulose as an electrolyte additive. Anal Bioanal Chem. 2014;406(12):2771–7. doi:10.1007/s00216-014-7698-7.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang L, Zhang L, Zhou K, Ye X, Zhang J, Xie A, Chen L, Kang JX, Cai C. Simultaneous determination of global DNA methylation and hydroxymethylation levels by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J Biomol Screen. 2012;17(7):877–84. doi:10.1177/1087057112447946.

    Article  PubMed  Google Scholar 

  114. Ramanathan A, Numata K, Wu ST, Li SX, Dawsey MW, Mao JP, Kawa SR, Riris H. Airborne measurement of atmospheric methane concentration using pulsed lidar. Proc Spie. 2012;8511. doi:Artn 85110e 10.1117/12.929990.

  115. Zhang L, Xu Y-Z, Xiao X-F, Chen J, Zhou X-Q, Zhu W-Y, Dai Z, Zou X-Y. Development of techniques for DNA-methylation analysis. TrAC Trends Anal Chem. 2015;72:114–22. doi:10.1016/j.trac.2015.03.025.

    Article  CAS  Google Scholar 

  116. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13(10):679–92. doi:10.1038/nrg3270.

    Article  CAS  PubMed  Google Scholar 

  117. Schillebeeckx M, Schrade A, Lobs AK, Pihlajoki M, Wilson DB, Mitra RD. Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Nucleic Acids Res. 2013;41(11):e116. doi:10.1093/nar/gkt230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Subiyantoro P. Methylation detection of oral cancer using bisulfite sequencing. Int J Oral Maxillofac Surg. 2015;44:e291–2. doi:10.1016/j.ijom.2015.08.331.

    Article  Google Scholar 

  120. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hibi K, Goto T, Shirahata A, Saito M, Kigawa G, Nemoto H, Sanada Y. Detection of TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011;311(1):96–100. doi:10.1016/j.canlet.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  122. Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 1997;25(12):2529–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kristensen LS, Mikeska T, Krypuy M, Dobrovic A. Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res. 2008;36(7):e42. doi:10.1093/nar/gkn113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pannone G, Santoro A, Cagiano S, Loreto C, Mattoni M, Lo Muzio L, Papagerakis S, Papagerakis P, Rubini C, Bufo P. The role of epigenetic alteration in oral cancer and in oral mucosa under alcohol and cigarette smoking. A study of a panel of eleven genes by methylation specific PCR (MSP). Oral Oncol. 2013;49:S8. doi:10.1016/j.oraloncology.2013.03.018.

    Article  Google Scholar 

  125. Dumache R, Puiu M, Negru S, Minciu R, Bucur A, Bumbacila B. Molecular diagnosis of bladder cancer from body fluids by methylation-specific PCR. Toxicol Lett. 2012;211:S53. doi:10.1016/j.toxlet.2012.03.212.

    Article  Google Scholar 

  126. Costello JF, Smiraglia DJ, Plass C. Restriction landmark genome scanning. Methods. 2002;27(2):144–9. doi:Pii S1046-2023(02)00067-1 10.1016/S1046-2023(02)00067-1.

  127. Li J, Yan H, Wang K, Tan W, Zhou X. Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Anal Chem. 2007;79(3):1050–6. doi:10.1021/ac061694i.

    Article  CAS  PubMed  Google Scholar 

  128. Hiraoka D, Yoshida W, Abe K, Wakeda H, Hata K, Ikebukuro K. Development of a method to measure DNA methylation levels by using methyl CpG-binding protein and luciferase-fused zinc finger protein. Anal Chem. 2012;84(19):8259–64. doi:10.1021/ac3015774.

    Article  CAS  PubMed  Google Scholar 

  129. Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res. 2006;34(3):e19. doi:10.1093/nar/gnj022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang X, Song Y, Song M, Wang Z, Li T, Wang H. Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation. Anal Chem. 2009;81(19):7885–91. doi:10.1021/ac901681k.

    Article  CAS  PubMed  Google Scholar 

  131. Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y, Sekiya T. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Anal Biochem. 2004;329(1):1–10. doi:10.1016/j.ab.2004.02.024.

    Article  CAS  PubMed  Google Scholar 

  132. Hua D, Hu Y, Wu YY, Cheng ZH, Yu J, Du X, Huang ZH. Quantitative methylation analysis of multiple genes using methylation-sensitive restriction enzyme-based quantitative PCR for the detection of hepatocellular carcinoma. Exp Mol Pathol. 2011;91(1):455–60. doi:10.1016/j.yexmp.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang M, Wang Q, Yuan W, Yang S, Wang X, Yan JD, Du J, Yin J, Gao SY, Sun BC, Zhu TH. Epigenetic regulation of bone morphogenetic protein-6 gene expression in breast cancer cells. J Steroid Biochem Mol Biol. 2007;105(1–5):91–7. doi:10.1016/j.jsbmb.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  134. Yamada H, Tanabe K, Ito T, Nishimoto S. The pH effect on the naphthoquinone-photosensitized oxidation of 5-methylcytosine. Chemistry. 2008;14(33):10453–61. doi:10.1002/chem.200800840.

    Article  CAS  PubMed  Google Scholar 

  135. Bareyt S, Carell T. Selective detection of 5-methylcytosine sites in DNA. Angew Chem. 2008;47(1):181–4. doi:10.1002/anie.200702159.

    Article  CAS  Google Scholar 

  136. Liu T, Zhao J, Zhang D, Li G. Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Anal Chem. 2009;82(1):229–33.

    Article  CAS  Google Scholar 

  137. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi:10.1016/S0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  138. Zhu L, Gao J, Huang K, Luo Y, Zhang B, Xu W. miR-34a screened by miRNA profiling negatively regulates Wnt/beta-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep. 2015;5:16732. doi:10.1038/srep16732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu C, Yu H, Zhang Y, Li D, Xing X, Chen L, Zeng X, Xu D, Fan Q, Xiao Y, Chen W, Wang Q. Upregulation of miR-34a-5p antagonizes AFB1-induced genotoxicity in F344 rat liver. Toxicon: Off J Int Soc Toxinology. 2015;106:46–56. doi:10.1016/j.toxicon.2015.09.016.

    Article  CAS  Google Scholar 

  140. Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005;39(4):519–25.

    Article  CAS  PubMed  Google Scholar 

  141. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179. doi:10.1093/nar/gni178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Mou G, Wang K, Xu D, Zhou G. Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNAs. Biosci Biotechnol Biochem. 2013;77(6):1349–53. doi:10.1271/bbb.130192.

    Article  CAS  PubMed  Google Scholar 

  143. Chen C, Tan R, Wong L, Fekete R, Halsey J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol. 2011;687:113–34. doi:10.1007/978-1-60761-944-4_8.

    Article  CAS  PubMed  Google Scholar 

  144. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33. doi:10.1021/cr300362f.

    Article  CAS  PubMed  Google Scholar 

  145. Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang XJ, Liu GD. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron. 2014;54:578–84. doi:10.1016/j.bios.2013.10.055.

    Article  CAS  PubMed  Google Scholar 

  146. Ge ZL, Lin MH, Wang P, Pei H, Yan J, Sho JY, Huang Q, He DN, Fan CH, Zuo XL. Hybridization chain reaction amplification of MicroRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem. 2014;86(4):2124–30. doi:10.1021/ac4037262.

    Article  CAS  PubMed  Google Scholar 

  147. Duan D, Zheng K-X, Shen Y, Cao R, Jiang L, Lu Z, Yan X, Li J. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 2011;39(22):e154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shen Y, Zheng K-X, Duan D, Jiang L, Li J. Label-free MicroRNA profiling not biased by 3′ end 2′-O-methylation. Anal Chem. 2012;84(15):6361–5.

    Article  CAS  PubMed  Google Scholar 

  149. Yao YG, Kajigaya S, Young NS. Mitochondrial DNA mutations in single human blood cells. Mutat Res. 2015;779:68–77. doi:10.1016/j.mrfmmm.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  150. Guo HS, Zhu P, Guo F, Li XL, Wu XL, Fan XY, Wen L, Tang FC. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc. 2015;10(5):645–59. doi:10.1038/nprot.2015.039.

    Article  CAS  PubMed  Google Scholar 

  151. Guo HS, Zhu P, Wu XL, Li XL, Wen L, Tang FC. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35. doi:10.1101/gr.161679.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genom. 2015;8. doi:ARTN 33 10.1186/s12920-015-0108-y.

  153. Dai Q, Zhao J, Qi XZ, Xu WT, He XY, Guo MZ, Dweep H, Cheng WH, Luo YB, Xia K, Gretz N, Huang KL. MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genom. 2014;15. doi:Artn 333 10.1186/1471-2164-15-333.

  154. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1(2):155–61. doi:10.1038/NMETH717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology of Beijing (XX2014B069). Many thanks to Boyang Zhang, for his kindly help in manuscript conception and preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Xu, W. (2016). Genotoxicity Detection at the Molecular Level in Food Safety Assessment: Conventional Methods and Developments. In: Functional Nucleic Acids Detection in Food Safety. Springer, Singapore. https://doi.org/10.1007/978-981-10-1618-9_18

Download citation

Publish with us

Policies and ethics