Skip to main content

Homogeneous Nucleation of [dmim+][Cl] from its Supercooled Liquid Phase: A Molecular Simulation Study

  • Chapter
  • First Online:
  • 1277 Accesses

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

We have used molecular simulations to study the homogeneous nucleation of the ionic liquid [dmim+][Cl] from its bulk supercooled liquid at 340 K. Our combination of methods include the string method in collective variables (Maragliano et al., J. Chem. Phys. 125:024106, 2006), Markovian milestoning with Voronoi tessellations (Maragliano et al J Chem Theory Comput 5:2589, 2009), and order parameters for molecular crystals (Santiso and Trout J Chem Phys 134:064109, 2011). The minimum free energy path, the approximate size of the critical nucleus, the free energy barrier and the rates involved in the homogeneous nucleation process were determined from our simulations. Our results suggest that the subcooled liquid (58 K of supercooling) has to overcome a free energy barrier of ~85 kcal/mol, and has to form a critical nucleus of size ~3.4 nm; this nucleus then grows to form the monoclinic crystal phase. A nucleation rate of 6.6 × 1010 cm−3 s−1 was determined from our calculations, which agrees with values observed in experiments and simulations of homogeneous nucleation of subcooled water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tesfai, A., El-Zahab, B., Bwambok, D.K., Baker, G.A., Fakayode, S.O., Lowry, M., Warner, I.M.: Controllable formation of ionic liquid micro- and nanoparticles via a melt-emulsion-quench approach. Nano Lett. 8, 897–901 (2008)

    Article  CAS  Google Scholar 

  2. Tesfai, A., El-Zahab, B., Kelley, A.T., Li, M., Garno, J.C., Baker, G.A., Warner, I.M.: Magnetic and nonmagnetic nanoparticles from a group of uniform materials based on organic salts. ACS Nano 3, 3244–3250 (2009)

    Article  CAS  Google Scholar 

  3. Bwambok, D.K., El-Zahab, B., Challa, S.K., Li, M., Chandler, L., Baker, G.A., Warner, I.M.: Near-Infrared fluorescent NanoGUMBOS for biomedical imaging. ACS Nano 3, 3854–3860 (2009)

    Article  CAS  Google Scholar 

  4. Das, S., Bwambok, D., El-Zahab, B., Monk, J., de Rooy, S.L., Challa, S., Li, M., Hung, F.R., Baker, G.A., Warner, I.M.: Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanogumbos. Langmuir 26, 12867–12876 (2010)

    Article  CAS  Google Scholar 

  5. Dumke, J.C., El-Zahab, B., Challa, S., Das, S., Chandler, L., Tolocka, M., Hayes, D.J., Warner, I.M.: Lanthanide-based luminescent NanoGUMBOS. Langmuir 26, 15599–15603 (2010)

    Article  CAS  Google Scholar 

  6. de Rooy, S.L., El-Zahab, B., Li, M., Das, S., Broering, E., Chandler, L., Warner, I.M.: Fluorescent one-dimensional nanostructures from a group of uniform materials based on organic salts. Chem. Commun. 47, 8916–8918 (2011)

    Article  Google Scholar 

  7. Warner, I.M., El-Zahab, B., Siraj, N.: Perspectives on moving ionic liquid chemistry into the solid phase. Anal. Chem. 86, 7184–7191 (2014)

    Article  CAS  Google Scholar 

  8. Thomas, W.P.W.: Ionic Liquids in Synthesis. Wilet-VCH, Weinheim (2008)

    Google Scholar 

  9. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  CAS  Google Scholar 

  10. Le Bideau, J., Viau, L., Vioux, A.: Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011)

    Article  Google Scholar 

  11. Sha, M., Wu, G., Fang, H., Zhu, G., Liu, Y.: Liquid-to-solid phase transition of a 1,3-dimethylimidazolium chloride ionic liquid monolayer confined between graphite walls. J. Phys. Chem. C 112, 18584–18587 (2008)

    Article  CAS  Google Scholar 

  12. Sha, M., Wu, G., Liu, Y., Tang, Z., Fang, H.: Drastic phase transition in ionic liquid Dmim CI confined between graphite walls: new phase formation. J. Phys. Chem. C 113, 4618–4622 (2009)

    Article  CAS  Google Scholar 

  13. Pinilla, C., Del Popolo, M.G., Kohanoff, J., Lynden-Bell, R.M.: Polarization relaxation in an ionic liquid confined between electrified walls. J. Phys. Chem. B 111, 4877–4884 (2007)

    Article  CAS  Google Scholar 

  14. Pinilla, C., Del Popolo, M.G., Lynden-Bell, R.M., Kohanoff, J.: Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells. J. Phys. Chem. B 109, 17922–17927 (2005)

    Article  CAS  Google Scholar 

  15. Youngs, T.G.A., Hardacre, C.: Application of static charge transfer within an ionic-liquid force field and its effect on structure and dynamics. ChemPhysChem 9, 1548–1558 (2008)

    Article  CAS  Google Scholar 

  16. Hanke, C.G., Atamas, N.A., Lynden-Bell, R.M.: Solvation of small molecules in imidazolium ionic liquids: a simulation study. Green Chem. 4, 107–111 (2002)

    Article  CAS  Google Scholar 

  17. Del Popolo, M.G., Lynden-Bell, R.M., Kohanoff, J.: Ab initio molecular dynamics simulation of a room temperature ionic liquid. J. Phys. Chem. B 109, 5895–5902 (2005)

    Article  Google Scholar 

  18. Buhl, M., Chaumont, A., Schurhammer, R., Wipff, G.: Ab initio molecular dynamics of liquid 1,3-dimethylimidazolium chloride. J. Phys. Chem. B 109, 18591–18599 (2005)

    Article  Google Scholar 

  19. Monk, J., Singh, R., Hung, F.R.: Effects of Pore size and pore loading on the properties of ionic liquids confined inside nanoporous CMK-3 carbon materials. J. Phys. Chem. C 115, 3034–3042 (2011)

    Article  CAS  Google Scholar 

  20. Debenedetti, P.G.: Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton, NJ (1996)

    Google Scholar 

  21. Kaschiev, D.: Nucleation: Basic Theory with Applications. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  22. Price, S.L.: Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42, 117–126 (2008)

    Article  Google Scholar 

  23. Erdemir, D., Lee, A.Y., Myerson, A.S.: Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009)

    Article  CAS  Google Scholar 

  24. Vekilov, P.G.: Nucleation. Cryst. Growth Des. 10, 5007–5019 (2010)

    Article  CAS  Google Scholar 

  25. Auer, S., Frenkel, D.: Quantitative prediction of crystal-nucleation rates for spherical colloids: a computational approach. Annu. Rev. Phys. Chem. 55, 333–361 (2004)

    Article  CAS  Google Scholar 

  26. Anwar, J., Zahn, D.: Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angewandte Chemie-International Edition 50, 1996–2013 (2011)

    Article  CAS  Google Scholar 

  27. Palmer, J.C., Debenedetti, P.G.: Recent advances in molecular simulation: a chemical engineering perspective. AIChE J. 61, 370–383 (2015)

    Article  CAS  Google Scholar 

  28. TenWolde, P.R., RuizMontero, M.J., Frenkel, D.: Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996)

    Google Scholar 

  29. Vehkamäki, H., Ford, I.J.: Critical cluster size and droplet nucleation rate from growth and decay simulations of Lennard-Jones clusters. J. Chem. Phys. 112, 4193–4202 (2000)

    Article  Google Scholar 

  30. Auer, S., Frenkel, D.: Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001)

    Article  CAS  Google Scholar 

  31. Moroni, D., ten Wolde, P.R., Bolhuis, P.G.: Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005)

    Article  Google Scholar 

  32. Trudu, F., Donadio, D., Parrinello, M.: Freezing of a Lennard-Jones fluid: from nucleation to spinodal regime. Phys. Rev. Lett. 97, 105701 (2006)

    Article  Google Scholar 

  33. Desgranges, C., Delhommelle, J.: Insights into the molecular mechanism underlying polymorph selection. J. Am. Chem. Soc. 128, 15104–15105 (2006)

    Article  CAS  Google Scholar 

  34. Desgranges, C., Delhommelle, J.: Polymorph selection during the crystallization of Yukawa systems. J. Chem. Phys. 126, 054501 (2007)

    Article  Google Scholar 

  35. Jungblut, S., Dellago, C.: Heterogeneous crystallization on tiny clusters. EPL (Europhysics Letters) 96, 56006 (2011)

    Article  Google Scholar 

  36. Beckham, G.T., Peters, B.: Optimizing nucleus size metrics for liquid-solid nucleation from transition paths of near-nanosecond duration. J. Phys. Chem. Lett. 2, 1133–1138 (2011)

    Article  CAS  Google Scholar 

  37. Chkonia, G., Wölk, J., Strey, R., Wedekind, J., Reguera, D.: Evaluating nucleation rates in direct simulations. J. Chem. Phys. 130, 064505 (2009)

    Article  Google Scholar 

  38. Radhakrishnan, R., Trout, B.L.: Nucleation of hexagonal ice (Ih) in liquid water. J. Am. Chem. Soc. 125, 7743–7747 (2003)

    Article  CAS  Google Scholar 

  39. Li, T., Donadio, D., Russo, G., Galli, G.: Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807–19813 (2011)

    Article  CAS  Google Scholar 

  40. Reinhardt, A., Doye, J.P.K.: Free energy landscapes for homogeneous nucleation of ice for a monatomic water model. J. Chem. Phys. 136, 054501 (2012)

    Article  Google Scholar 

  41. Sanz, E., Vega, C., Espinosa, J.R., Caballero-Bernal, R., Abascal, J.L.F., Valeriani, C.: Homogeneous ice nucleation at moderate supercooling from molecular simulation. J. Am. Chem. Soc. 135, 15008–15017 (2013)

    Article  CAS  Google Scholar 

  42. Sear, R.P.: The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328–356 (2012)

    Article  CAS  Google Scholar 

  43. Andrey, V.B., Jamshed, A., Ruslan, D., Richard, H.: Challenges in molecular simulation of homogeneous ice nucleation. J. Phys.: Condens. Matter 20, 494243 (2008)

    Google Scholar 

  44. Reinhardt, A., Doye, J.P.K.: Note: homogeneous TIP4P/2005 ice nucleation at low supercooling. J. Chem. Phys. 139, 096102 (2013)

    Article  Google Scholar 

  45. Joswiak, M.N., Duff, N., Doherty, M.F., Peters, B.: Size-dependent surface free energy and tolman-corrected droplet nucleation of TIP4P/2005 water. J. Phys. Chem. Lett. 4, 4267–4272 (2013)

    Article  CAS  Google Scholar 

  46. Holten, V., Limmer, D.T., Molinero, V., Anisimov, M.A.: Nature of the anomalies in the supercooled liquid state of the mW model of water. J. Chem. Phys. 138, 174501 (2013)

    Article  Google Scholar 

  47. Valeriani, C., Sanz, E., Frenkel, D.: Rate of homogeneous crystal nucleation in molten NaCl. J. Chem. Phys. 122 (2005)

    Google Scholar 

  48. Quigley, D., Rodger, P.M.: Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. J. Chem. Phys. 128, 221101 (2008)

    Article  CAS  Google Scholar 

  49. Li, T., Donadio, D., Galli, G.: Nucleation of tetrahedral solids: a molecular dynamics study of supercooled liquid silicon. J. Chem. Phys. 131, 224519 (2009)

    Article  Google Scholar 

  50. Yi, P., Rutledge, G.C.: Molecular simulation of crystal nucleation in n-octane melts. J. Chem. Phys. 131, 134902 (2009)

    Article  Google Scholar 

  51. Saika-Voivod, I., Poole, P.H., Bowles, R.K.: Test of classical nucleation theory on deeply supercooled high-pressure simulated silica. J. Chem. Phys. 124, 224709 (2006)

    Article  Google Scholar 

  52. Agarwal, V., Peters, B.: Nucleation near the eutectic point in a Potts-lattice gas model. J. Chem. Phys. 140, 084111 (2014)

    Article  Google Scholar 

  53. Singh, M., Dhabal, D., Nguyen, A.H., Molinero, V., Chakravarty, C.: Triplet correlations dominate the transition from simple to tetrahedral liquids. Phys. Rev. Lett. 112, 147801 (2014)

    Article  Google Scholar 

  54. Shah, M., Santiso, E.E., Trout, B.L.: Computer simulations of homogeneous nucleation of benzene from the melt. J. Phys. Chem. B 115, 10400–10412 (2011)

    Article  CAS  Google Scholar 

  55. Giberti, F., Salvalaglio, M., Mazzotti, M., Parrinello, M.: Insight into the nucleation of urea crystals from the melt. Chem. Eng. Sci. 121, 51–59 (2015)

    Article  CAS  Google Scholar 

  56. Yu, T.-Q., Chen, P.-Y., Chen, M., Samanta, A., Vanden-Eijnden, E., Tuckerman, M.: Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions. J. Chem. Phys. 140, 214109 (2014)

    Article  Google Scholar 

  57. Samanta, A., Tuckerman, M.E., Yu, T.-Q.: E, W. Microscopic mechanisms of equilibrium melting of a solid. Science 346, 729–732 (2014)

    Article  CAS  Google Scholar 

  58. Pedersen, U.R., Hummel, F., Dellago, C.: Computing the crystal growth rate by the interface pinning method. J. Chem. Phys. 142, 044104 (2015)

    Google Scholar 

  59. Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125, 024106 (2006)

    Google Scholar 

  60. Vanden-Eijnden, E., Venturoli, M.: Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J. Chem. Phys. 130, 194103 (2009)

    Google Scholar 

  61. Maragliano, L., Vanden-Eijnden, E., Roux, B.: Free energy and kinetics of conformational transitions from voronoi tessellated milestoning with restraining potentials. J. Chem. Theory Comput. 5, 2589–2594 (2009)

    Article  CAS  Google Scholar 

  62. Vanden-Eijnden, E., Venturoli, M.: Markovian milestoning with Voronoi tessellations. J. Chem. Phys. 130, 194101 (2009)

    Article  Google Scholar 

  63. Ovchinnikov, V., Karplus, M., Vanden-Eijnden, E.: Free energy of conformational transition paths in biomolecules: the string method and its application to myosin VI. J. Chem. Phys. 134, 085103 (2011)

    Article  Google Scholar 

  64. Miller, T.F., III; Vanden-Eijnden, E., Chandler, D.: Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 14559–14564 (2007)

    Google Scholar 

  65. Santiso, E.E., Trout, B.L.: A general set of order parameters for molecular crystals. J. Chem. Phys. 134, 064109 (2011)

    Article  Google Scholar 

  66. Santiso, E.E., Trout, B.L.: A general method for molecular modeling of nucleation from the melt. J. Chem. Phys. 143, 174109 (2015)

    Google Scholar 

  67. He, X., Shen, Y., Hung, F.R., Santiso, E.E.: Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt. J. Chem. Phys. 143, 124506 (2015)

    Article  Google Scholar 

  68. Barducci, A., Bonomi, M., Parrinello, M.: Metadynamics. Wiley Interdis. Rev. Comput. Mol. Sci. 1, 826–843 (2011)

    Article  CAS  Google Scholar 

  69. Allen, F.H.: The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallographica Sect. B-Struct. Sci. 58, 380–388 (2002)

    Article  Google Scholar 

  70. Arduengo, A.J., Dias, H.V.R., Harlow, R.L., Kline, M.: Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114, 5530–5534 (1992)

    Article  CAS  Google Scholar 

  71. Lopes, J.N.C., Deschamps, J., Padua, A.A.H.: Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108, 2038–2047 (2004)

    Article  CAS  Google Scholar 

  72. Canongia Lopes, J.N., Padua, A.A.H.: Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 110, 19586–19592 (2006)

    Google Scholar 

  73. Lopes, J.N.C., Padua, A.A.H.: Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 108, 16893–16898 (2004)

    Article  CAS  Google Scholar 

  74. Shimizu, K., Almantariotis, D., Gomes, M.F.C., Padua, A.A.H., Lopes, J.N.C.: Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010)

    Article  CAS  Google Scholar 

  75. Lopes, J.N.C., Padua, A.A.H., Shimizu, K.: Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112, 5039–5046 (2008)

    Article  Google Scholar 

  76. Fannin, A.A., Floreani, D.A., King, L.A., Landers, J.S., Piersma, B.J., Stech, D.J., Vaughn, R.L., Wilkes, J.S., Williams, J.L.: Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids. 2. phase-transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 88, 2614–2621 (1984)

    Article  CAS  Google Scholar 

  77. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  78. Darden, T., York, D., Pedersen, L.: Particle mesh ewald—an n.log(n) method for ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  79. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.: LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  CAS  Google Scholar 

  80. Vanden-Eijnden, E.: Some recent techniques for free energy calculations. J. Comput. Chem. 30, 1737–1747 (2009)

    Article  CAS  Google Scholar 

  81. Pruppacher, H.R.: A new look at homogeneous ice nucleation in supercooled water drops. J. Atmos. Sci. 52, 1924–1933 (1995)

    Article  Google Scholar 

  82. Taborek, P.: Nucleation in emulsified supercooled water. Phys. Rev. B 32, 5902–5906 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Isiah Warner and his group (Chemistry, LSU) for helpful discussions. This work was partially supported by the National Science Foundation (CAREER Award CBET-1253075, and EPSCoR Cooperative Agreement EPS-1003897), and by the Louisiana Board of Regents. High-performance computational resources for this research were provided by High Performance Computing at Louisiana State University (http://www.hpc.lsu.edu) and by the Louisiana Optical Network Initiative (http://www.loni.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco R. Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

He, X., Shen, Y., Hung, F.R., Santiso, E.E. (2016). Homogeneous Nucleation of [dmim+][Cl] from its Supercooled Liquid Phase: A Molecular Simulation Study. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_7

Download citation

Publish with us

Policies and ethics