Skip to main content

A Discontinuous Potential Model for Protein–Protein Interactions

  • Chapter
  • First Online:
Book cover Foundations of Molecular Modeling and Simulation

Part of the book series: Molecular Modeling and Simulation ((MMAS))

  • 1269 Accesses

Abstract

Protein–protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein–protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain–sidechain, sidechain–backbone, and backbone–backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kastelic, M., Kalyuzhnyi, Y.V., Hribar-Lee, B., Dill, K.A., Vlachy, V.: Protein aggregation in salt solutions. Proc. Natl. Acad. Sci. U.S.A. 112, 6766–6770 (2015)

    Article  CAS  Google Scholar 

  2. Azzarito, V., Long, K., Murphy, N.S., Wilson, A.J.: Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Nat. Chem. 5, 161–173 (2013)

    Article  CAS  Google Scholar 

  3. Hober, S., Nord, K., Linhult, M.: Protein A chromatography for antibody purification. J. Chrom. B 848, 40–47 (2007)

    Article  CAS  Google Scholar 

  4. Best, R.B., Zhu, X., Shim, J., Lopes, P.E.M., Mittal, J., Feig, M., MacKerell, A.D.: Optimization of the additive CHARMM All-atom protein force field Targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012)

    Article  CAS  Google Scholar 

  5. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C.: Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct. Funct. Bioinf. 65, 712–725 (2006)

    Article  CAS  Google Scholar 

  6. Huang, W., Lin, Z., van Gunsteren, W.F.: Validation of the GROMOS 54A7 force field with respect to β-peptide folding. J. Chem. Theory Comput. 7, 1237–1243 (2011)

    Article  CAS  Google Scholar 

  7. Schmid, N., Eichenberger, A., Choutko, A., Riniker, S., Winger, M., Mark, A., van Gunsteren, W.: Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011)

    Article  CAS  Google Scholar 

  8. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  9. Tozzini, V.: Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144–150 (2005)

    Article  CAS  Google Scholar 

  10. Wu, C., Shea, J.-E.: Coarse-grained models for protein aggregation. Curr. Opin. Struct. Biol. 21, 209–220 (2011)

    Article  CAS  Google Scholar 

  11. Saunders, M.G., Voth, G.A.: Coarse-graining of multiprotein assemblies. Curr. Opin. Struct. Biol. 22, 144–150 (2012)

    Article  CAS  Google Scholar 

  12. Baaden, M., Marrink, S.J.: Coarse-grain modelling of protein–protein interactions. Curr. Opin. Struct. Biol. 23, 878–886 (2013)

    Article  CAS  Google Scholar 

  13. Noid, W.G.: Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139, 090901(1–25) (2013)

    Google Scholar 

  14. Saunders, M.G., Voth, G.A.: Coarse-graining methods for computational biology. Annu. Rev. Biophys. 42, 73–93 (2013)

    Article  CAS  Google Scholar 

  15. Kar, P., Feig, M.: In Biomolecular modelling and simulations. In: Karabencheva Christova, T. (ed.) vol. 96, p. 143. Elsevier Academic Press Inc., San Diego (2014)

    Google Scholar 

  16. Cheon, M., Chang, I., Hall, C.K.: Extending the PRIME model for protein aggregation to all 20 amino acids. Proteins 78, 2950–2960 (2010)

    Article  CAS  Google Scholar 

  17. Arkhipov, A., Yin, Y., Schulten, K.: Four-scale description of membrane sculpting by BAR domains. Biophys. J. 95, 2806–2821 (2008)

    Article  CAS  Google Scholar 

  18. Head-Gordon, T., Brown, S.: Minimalist models for protein folding and design. Curr. Opin. Struct. Biol. 13, 160–167 (2003)

    Article  CAS  Google Scholar 

  19. Matysiak, S., Clementi, C.: Minimalist protein model as a diagnostic tool for misfolding and aggregation. J. Mol. Biol. 363, 297–308 (2006)

    Article  CAS  Google Scholar 

  20. Dama, J.F., Sinitskiy, A.V., McCullagh, M., Weare, J., Roux, B., Dinner, A.R., Voth, G.A.: The theory of ultra-coarse-graining. 1. general principles. J. Chem. Theory Comput. 9, 2466–2480 (2013)

    Article  CAS  Google Scholar 

  21. Best, R.B., Hummer, G., Eaton, W.A.: Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. U.S.A. 110, 17874–17879 (2013)

    Article  CAS  Google Scholar 

  22. Sippl, M.J.: Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5, 229–235 (1995)

    Article  CAS  Google Scholar 

  23. Thompson, J.J., Tabatabaei Ghomi, H., Lill, M.A.: Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure. Proteins, 82, 3450–3465 (2014)

    Google Scholar 

  24. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007)

    Article  CAS  Google Scholar 

  25. Stark, A.C., Andrews, C.T., Elcock, A.H.: Toward optimized potential functions for protein-protein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J. Chem. Theory Comput. 9, 4176–4185 (2013)

    Article  CAS  Google Scholar 

  26. Smith, S.W., Hall, C.K., Freeman, B.D.: Molecular dynamics for polymeric fluids using discontinuous potentials. J. Comput. Phys. 134, 16–30 (1997)

    Article  CAS  Google Scholar 

  27. Proctor, E.A., Ding, F., Dokholyan, N.V.: Discrete molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 80–92 (2011)

    Article  CAS  Google Scholar 

  28. Shirvanyants, D., Ding, F., Tsao, D., Ramachandran, S., Dokholyan, N.V.: Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization. J. Phys. Chem. B 116, 8375–8382 (2012)

    Article  CAS  Google Scholar 

  29. Paul, G.: A complexity O(1) priority queue for event driven molecular dynamics simulations. J. Comput. Phys. 221, 615–625 (2007)

    Article  CAS  Google Scholar 

  30. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Intermolecular Forces Reidel. Dordrecht (1981)

    Google Scholar 

  31. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  CAS  Google Scholar 

  32. Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008)

    Article  CAS  Google Scholar 

  33. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101(1–7) (2007)

    Google Scholar 

  34. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J App. Phys. 52, 7182–7190 (1981)

    Article  CAS  Google Scholar 

  35. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013)

    Article  CAS  Google Scholar 

  36. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980)

    Article  CAS  Google Scholar 

  37. Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009)

    Article  Google Scholar 

  38. Reith, D., Pütz, M., Müller-Plathe, F.: Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003)

    Article  CAS  Google Scholar 

  39. Thomson, C., Lue, L., Bannerman, M.N.: Mapping continuous potentials to discrete forms. J Chem. Phys. 140, 034105(1–9) (2014)

    Google Scholar 

  40. Curtis, E.M., Hall, C.K.: Molecular dynamics simulations of dppc bilayers using “LIME”, a new coarse-grained model. J Phys. Chem. B 117, 5019–5030 (2013)

    Article  CAS  Google Scholar 

  41. Neal, B.L., Lenhoff, A.M.: Excluded volume contribution to the osmotic second virial coefficient for proteins. AIChE J. 41, 1010–1014 (1995)

    Article  CAS  Google Scholar 

  42. Ruppert, S., Sandler, S.I., Lenhoff, A.M.: Correlation between the osmotic second Virial coefficient and the solubility of proteins. Biotechnol. Progr. 17, 182–187 (2001)

    Article  CAS  Google Scholar 

  43. Tessier, P.M., Lenhoff, A.M., Sandler, S.I.: Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. Biophys. J. 82, 1620–1631 (2002)

    Article  CAS  Google Scholar 

  44. Tessier, P.M., Sandler, S.I., Lenhoff, A.M.: Direct measurement of protein osmotic second virial cross coefficients by cross-interaction chromatography. Protein Sci. 13, 1379–1390 (2004)

    Article  CAS  Google Scholar 

  45. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J.: The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)

    Article  CAS  Google Scholar 

  46. Marin-Rimoldi, E., Shah, J.K., Maginn, E.J.: Monte Carlo simulations of water solubility in ionic liquids: a force field assessment. Fluid Phase Equilib. (2015). doi:10.1016/j.fluid.2015.07.007

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (CBET-1236053) and the National Institutes of Health (EB006006). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol K. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shao, Q., Hall, C.K. (2016). A Discontinuous Potential Model for Protein–Protein Interactions. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_1

Download citation

Publish with us

Policies and ethics