Skip to main content

Utilization of Nanofluid in Various Clean Energy and Energy Efficiency Applications

  • Chapter
  • First Online:
Application of Thermo-fluid Processes in Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Policy makers around the globe, both at the national and international level, have been emphasizing on energy efficiency and utilization of alternative clean energy technologies by replacing fossil fuel as a primary source of energy. This interest was initiated when the adverse effects of fossil fuel on the environment such as greenhouse gas emission and global warming were unfolded. Multidisciplinary researches are being carried out in the research laboratories to provide effective clean energy solutions. Nanofluid, a colloidal mixture of nanoparticles in the base fluid, e.g., water, ethylene glycol, oil, offers efficiency improvements in many clean energy applications due to the improvement in its thermophysical property. In this chapter, use of nanofluid in various clean energy and energy efficiency applications is reviewed. Solar energy, the dominant clean energy source, is a potential field of application where nanofluid can be employed. Solar thermal collectors and solar water heaters are the ideal candidates for utilization of nanofluid for improving solar to thermal energy conversion. Thermal storage system employs phase change material (PCM) for storing thermal energy, and nanofluid may be added to the PCM for enhanced performance. Nanofluid can be used in carefully designed heat exchangers for extracting energy from geothermal resources. This mixture can also be used in waste heat collector to improve efficiency for its thermophysical property causing a heat transfer enhancement. Adding nanoparticles to the refrigerants improves the heat transfer characteristics of refrigerants and improves the performance of the refrigeration system from an energy efficiency perspective. However, there are challenges associated with nanofluid which are needed to overcome for optimal performance of the working fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Nada, E., Masoud, Z., & Hijazi, A. (2008). Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. International Communications in Heat and Mass Transfer, 35(5), 657–665.

    Article  Google Scholar 

  2. Ali, A., Vafai, K., & Khaled, A. R. (2004). Analysis of heat and mass transfer between air and falling film in a cross flow configuration. International Journal of Heat and Mass Transfer, 47(4), 743–755.

    Article  Google Scholar 

  3. Altohamy, A. A., Rabbo, M. A., Sakr, R. Y., & Attia, A. A. (2015). Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Applied Thermal Engineering, 84, 331–338.

    Article  Google Scholar 

  4. Arthur, O., & Karim, M. A. (2016). An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renewable and Sustainable Energy Reviews, 31(55), 739–755.

    Article  Google Scholar 

  5. Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics, 83(01), 97–117.

    Article  MathSciNet  Google Scholar 

  6. Bi, S. S., Shi, L., & Zhang, L. L. (2008). Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering, 28(14), 1834–1843.

    Article  Google Scholar 

  7. Chandrasekaran, P., Cheralathan, M., Kumaresan, V., & Velraj, R. (2014). Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy, 72, 636–642.

    Article  Google Scholar 

  8. Chandrasekaran, P., Cheralathan, M., Kumaresan, V., & Velraj, R. (2014). Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system. International Journal of Refrigeration, 41, 157–163.

    Article  Google Scholar 

  9. Chen, M., He, Y., Zhu, J., & Kim, D. R. (2016). Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Conversion and Management, 112, 21–30.

    Article  Google Scholar 

  10. Choi, S. (2006, April 18–20). Nano fluids for improved efficiency in cooling systems. In: Heavy vehicle systems review. Argonne National Laboratory.

    Google Scholar 

  11. Choi, C., Yoo, H. S., & Oh, J. M. (2008). Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy efficient coolants. CurrApplPhys, 8, 710–712.

    Google Scholar 

  12. Cingarapu, S., Singh, D., Timofeeva, E. V., & Moravek, M. R. (2014). Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage. International Journal of Energy Research, 38(1), 51–59.

    Article  Google Scholar 

  13. Colangelo, G., Favale, E., Miglietta, P., Milanese, M., & de Risi, A. (2016). Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy, 95, 124–136.

    Article  Google Scholar 

  14. Corcione, M. (2010). Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. International Journal of Thermal Sciences, 49(9), 1536–1546.

    Article  Google Scholar 

  15. Cui, Y., & Zhu, Q. (2012). Study of photovoltaic/thermal systems with MgO-water nanofluids flowing over silicon solar cells. In Power and Energy Engineering Conference (APPEEC), 2012 Asia-Pacific Year, pp. 1–4.

    Google Scholar 

  16. Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567–574.

    Article  Google Scholar 

  17. Delfani, S., Karami, M., & Akhavan-Behabadi, M. A. (2016). Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renewable Energy, 87, 754–764.

    Article  Google Scholar 

  18. Duangthongsuk, W., & Wongwises, S. (2009). Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52(7), 2059–2067.

    Article  Google Scholar 

  19. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.

    Article  Google Scholar 

  20. Ebrahimnia-Bajestan, E., Moghadam, M. C., Niazmand, H., Daungthongsuk, W., & Wongwises, S. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer, 31(92), 1041–1052.

    Article  Google Scholar 

  21. Ehsan, M. M., Noor, S., Salehin, S., Sadrul Islam, A. K. M. (2015). Application of nanofluid in heat exchangers for energy savings. In M. Masud Khan, Nur Md. Sayeed Hassan (Eds.), Thermofluids modeling for energy efficiency applications (pp. 73–101). Academic Press Inc., Elsevier.

    Google Scholar 

  22. Elias, M. M., Miqdad, M., Mahbubul, I. M., Saidur, R., Kamalisarvestani, M., Sohel, M. R., et al. (2013). Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 44, 93–99.

    Article  Google Scholar 

  23. Faizal, M., Saidur, R., Mekhilef, S., & Alim, M. A. (2013). Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management, 76, 162–168.

    Article  Google Scholar 

  24. Farajollahi, B., Etemad, S. G., & Hojjat, M. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53(1), 12–17.

    Article  MATH  Google Scholar 

  25. Gorji, T. B., Ranjbar, A. A., & Mirzababaei, S. N. (2015). Optical properties of carboxyl functionalized carbon nanotube aqueous nanofluids as direct solar thermal energy absorbers. Solar Energy, 119, 332–342.

    Article  Google Scholar 

  26. Gunnasegaran, P., Shuaib, N. H., Abdul Jalal, M. F., & Sandhita, E. (2012). Numerical study of fluid dynamic and heat transfer in a compact heat exchanger using nanofluids. ISRN Mechanical Engineering.

    Google Scholar 

  27. Gupta, H. K., Agrawal, G. D., & Mathur, J. (2015). An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Solar Energy, 118, 390–396.

    Article  Google Scholar 

  28. Haghshenas, F. M., Talaie, M. R., & Nasr, S. (2011). Numerical and experimental investigation of heat transfer of ZnO/water nanofluid in the concentric tube and plate heat exchangers. Thermal Science, 15(1), 183–194.

    Article  Google Scholar 

  29. Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems. Industrial and Engineering Chemistry Fundamentals, 1(3), 187–191.

    Article  Google Scholar 

  30. Harikrishnan, S., & Kalaiselvam, S. (2012). Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochimica Acta, 533, 46–55.

    Article  Google Scholar 

  31. Harikrishnan, S., Magesh, S., & Kalaiselvam, S. (2013). Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochimica Acta, 565, 137–145.

    Article  Google Scholar 

  32. He, Q., Wang, S., Tong, M., & Liu, Y. (2012). Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Conversion and Management, 64, 199–205.

    Article  Google Scholar 

  33. Jung, J. Y., Oh, H. S., & Kwak, H. Y. (2009). Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer, 52(1), 466–472.

    Article  Google Scholar 

  34. Kannadasan, N., Ramanathan, K., & Suresh, S. (2012). Comparison of heat transfer and pressure drop in horizontal and vertical helically coiled heat exchanger with CuO/water based nano fluids. Experimental Thermal and Fluid Science, 42, 64–70.

    Article  Google Scholar 

  35. Karami, M., Akhavan-Bahabadi, M. A., Delfani, S., & Raisee, M. (2015). Experimental investigation of CuO nanofluid-based direct absorption solar collector for residential applications. Renewable and Sustainable Energy Reviews, 52, 793–801.

    Article  Google Scholar 

  36. Karami, M., Akhavan-Behabadi, M. A., Dehkordi, M. R., & Delfani, S. (2016). Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Solar Energy Materials and Solar Cells, 144, 136–142.

    Article  Google Scholar 

  37. Khullar, V., Tyagi, H., Hordy, N., Otanicar, T. P., Hewakuruppu, Y., Modi, P., et al. (2014). Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. International Journal of Heat and Mass Transfer, 77, 377–384.

    Article  Google Scholar 

  38. Kim, J. K., Jung, J. Y., & Kang, Y. T. (2007). Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids. International Journal of Refrigeration, 30(1), 50–57.

    Article  Google Scholar 

  39. Kim, H., Ham, J., Park, C., & Cho, H. (2016). Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy, 94, 497–507.

    Article  Google Scholar 

  40. Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6), 577–588.

    Article  Google Scholar 

  41. Kulkarni, D. P., Das, D. K., & Chukwu, G. A. (2006). Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150–1154.

    Article  Google Scholar 

  42. Kumaresan, V., Chandrasekaran, P., Nanda, M., Maini, A. K., & Velraj, R. (2013). Role of PCM based nanofluids for energy efficient cool thermal storage system. International Journal of Refrigeration, 36(6), 1641–1647.

    Article  Google Scholar 

  43. Kwak, H. E., Shin, D., & Banerjee, D. (2010, January). Enhanced sensible heat capacity of molten salt and conventional heat transfer fluid based nanofluid for solar thermal energy storage application. In ASME 2010 4th International Conference on Energy Sustainability (pp. 735–739). American Society of Mechanical Engineers.

    Google Scholar 

  44. Lee, S., Choi, S. S., Li, S. A., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289.

    Article  Google Scholar 

  45. Lee, J. K., Koo, J., Hong, H., & Kang, Y. T. (2010). The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. International Journal of Refrigeration, 33(2), 269–275.

    Article  Google Scholar 

  46. Leong, K. Y., Saidur, R., Mahlia, T., & Yau, Y. (2012). Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants. International Journal of Heat and Mass Transfer, 55(4), 808–816.

    Article  Google Scholar 

  47. Lin, Y.-H., Kang, S.-W., & Chen, H.-L. (2008). Effect of silver nano-fluid on pulsating heat pipe thermal performance. Applied Thermal Engineering, 28(11–12), 1312–1317.

    Article  Google Scholar 

  48. Liu, M., Lin, M. C., & Wang, C. (2011). Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Research Letters, 6(1), 1–13.

    Google Scholar 

  49. Liu, Z. H., Hu, R. L., Lu, L., Zhao, F., & Xiao, H. S. (2013). Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Conversion and Management, 73, 135–143.

    Article  Google Scholar 

  50. Lu, L., Liu, Z. H., & Xiao, H. S. (2011). Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment. Solar Energy, 85(2), 379–387.

    Article  Google Scholar 

  51. Ma, H. B., Wilson, C., Borgmeyer, B., et al. (2006). Effect of nano fluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters, 88(14), Article ID 143116, 3.

    Google Scholar 

  52. Ma, H. B., Wilson, C., Yu, Q., Park, K., Choi, U. S., & Tirumala, M. (2006). An experimental investigation of heat transport capability in a nano fluid oscillating heat pipe. Journal of Heat Transfer, 128(11), 1213–1216.

    Article  Google Scholar 

  53. Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 874–885.

    Article  Google Scholar 

  54. Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2013). Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Engineering, 56, 310–315.

    Article  Google Scholar 

  55. Maı̈ga, S. E. B., Nguyen, C. T., Galanis, N., & Roy, G. (2004). Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattices and Microstructures, 35(3), 543–557.

    Google Scholar 

  56. Mapa, L. B., &Mazhar, S. (2005, April). Heat transfer in mini heat exchanger using nanofluids. In Conference of American Society for Engineering Education, DeKalb, IL (pp. 1–2).

    Google Scholar 

  57. Maxwell, J. C. (1881). A treatise on electricity and magnetism (Vol. 1). Clarendon Press.

    Google Scholar 

  58. Meibodi, S. S., Kianifar, A., Niazmand, H., Mahian, O., & Wongwises, S. (2015). Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. International Communications in Heat and Mass Transfer, 65, 71–75.

    Article  Google Scholar 

  59. Menbari, A., & Alemrajabi, A. A. (2016). Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3–CuO binary nanofluids) for direct absorption solar thermal energy. Optical Materials, 52, 116–125.

    Article  Google Scholar 

  60. Michael, J. J., & Iniyan, S. (2015). Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Conversion and Management, 95, 160–169.

    Article  Google Scholar 

  61. Mooney, M. (1951). The viscosity of a concentrated suspension of spherical particles. Journal of Colloid Science, 6(2), 162–170.

    Article  Google Scholar 

  62. Naphon, P., Thongkum, D., & Assadamongkol, P. (2009). Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures. Energy Conversion and Management, 50(3), 772–776.

    Article  Google Scholar 

  63. Nguyen, C. T., Roy, G., Gauthier, C., & Galanis, N. (2007). Heat transfer enhancement using aluminum oxide–water Nano fluid for an electronic liquid cooling system. Applied Thermal Engineering, 27(8–9), 1501–1506.

    Article  Google Scholar 

  64. Nielsen, L. E. (1970). Generalized equation for the elastic moduli of composite materials. Journal of Applied Physics, 41(11), 4626–4627.

    Article  Google Scholar 

  65. Noor, S., Ehsan, M. M., Mayeed, M. S., & Islam, A. S. (2014, November). Study of convective heat transfer for turbulent flow of nanofluids through corrugated channels. In ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers.

    Google Scholar 

  66. Noor, S., Ehsan, M. M., Salehin, S., & Islam, Sadrul, A. K. M. (2014). Heat transfer and pumping power using nanofluid in a corrugated tube. In Proceedings of AFMC 2014 Conference. Heat Transfer, 8, 11.

    Google Scholar 

  67. Nourani, M., Hamdami, N., Keramat, J., Moheb, A., & Shahedi, M. (2016). Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyllactylate as a stable phase change material with high thermal conductivity. Renewable Energy, 88, 474–482.

    Article  Google Scholar 

  68. Ollivier, E., Bellettre, J., Tazerout, M., & Roy, G. C. (2006). Detection of knock occurrence in a gas SI engine from a heat transfer analysis. Energy Conversion and Management, 47(7–8), 879–893.

    Article  Google Scholar 

  69. Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., & Taylor, R. A. (2010). Nanofluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy, 2(3), 033102.

    Article  Google Scholar 

  70. Pandey, S. D., & Nema, V. K. (2012). Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science, 38, 248–256.

    Article  Google Scholar 

  71. Pantzali, M. N., Kanaris, A. G., Antoniadis, K. D., Mouza, A. A., & Paras, S. V. (2009). Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. International Journal of Heat and Fluid Flow, 30(4), 691–699.

    Article  Google Scholar 

  72. Pantzali, M. N., Mouza, A. A., & Paras, S. V. (2009). Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chemical Engineering Science, 64(14), 3290–3300.

    Article  Google Scholar 

  73. Parvin, S., Nasrin, R., Alim, M. A., Hossain, N. F., & Chamkha, A. J. (2012). Thermal conductivity variation on natural convection flow of water–alumina nanofluid in an annulus. International Journal of Heat and Mass Transfer, 55(19), 5268–5274.

    Article  Google Scholar 

  74. Paul, G., Philip, J., Raj, B., Das, P. K., & Manna, I. (2011). Synthesis, characterization, and thermal property measurement of nano-Al 95 Zn 05 dispersed nanofluid prepared by a two-step process. International Journal of Heat and Mass Transfer, 54(15), 3783–3788.

    Article  Google Scholar 

  75. Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32(6), 1259–1270.

    Article  Google Scholar 

  76. Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009). Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32(7), 1756–1764.

    Article  Google Scholar 

  77. Peng, H., Ding, G., & Hu, H. (2011). Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Experimental Thermal and Fluid Science, 35(6), 960–970.

    Article  Google Scholar 

  78. Polvongsri, S., & Kiatsiriroat, T. (2014). Performance analysis of flat-plate solar collector having silver nanofluid as a working fluid. Heat Transfer Engineering, 35(13), 1183–1191.

    Article  Google Scholar 

  79. Prabhat, N. (2010). Critical evaluation of anomalous thermal conductivity and convective heat transfer enhancement in nanofluids. Doctoral dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  80. Prasher, R., Bhattacharya, P., & Phelan, P. E. (2005). Thermal conductivity of nanoscale colloidal solutions (nanofluids). Physical Review Letters, 94(2), 025901.

    Article  Google Scholar 

  81. Rejeb, O., Sardarabadi, M., Ménézo, C., Passandideh-Fard, M., Dhaou, M. H., & Jemni, A. (2016). Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Conversion and Management, 110, 367–377.

    Article  Google Scholar 

  82. Sabiha, M. A., Saidur, R., Hassani, S., Said, Z., & Mekhilef, S. (2015). Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Conversion and Management, 105, 1377–1388.

    Article  Google Scholar 

  83. Said, Z., Sabiha, M. A., Saidur, R., Hepbasli, A., Rahim, N. A., Mekhilef, S., et al. (2015). Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. Journal of Cleaner Production, 92, 343–353.

    Article  Google Scholar 

  84. Said, Z., Saidur, R., Sabiha, M. A., Hepbasli, A., & Rahim, N. A. (2016). Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. Journal of Cleaner Production, 112, 3915–3926.

    Article  Google Scholar 

  85. Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., & Mohammed, H. A. (2011). A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 15(1), 310–323.

    Article  Google Scholar 

  86. Saidur, R., Leong, K. Y., & Mohammad, H. A. (2011). A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15(3), 1646–1668.

    Article  Google Scholar 

  87. Sattler, K. D. (Ed.). (2010). Handbook of nanophysics: Nanoparticles and quantum dots. CRC Press.

    Google Scholar 

  88. Schuller, M., Shao, Q., & Lalk, T. (2015). Experimental investigation of the specific heat of a nitrate–alumina nanofluid for solar thermal energy storage systems. International Journal of Thermal Sciences, 91, 142–145.

    Article  Google Scholar 

  89. Shende, R., & Sundara, R. (2015). Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Solar Energy Materials and Solar Cells, 140, 9–16.

    Article  Google Scholar 

  90. Shin, D., & Banerjee, D. (2011). Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. International Journal of Heat and Mass Transfer, 54(5), 1064–1070.

    Article  Google Scholar 

  91. Sonawane, S. S., Khedkar, R. S., & Wasewar, K. L. (2013). Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. International Communications in Heat and Mass Transfer, 49, 60–68.

    Article  Google Scholar 

  92. Taylor, R. (2011). Thermal energy conversion in nanofluids. Doctoral dissertation, Arizona State University.

    Google Scholar 

  93. Taylor, R. A., Phelan, P. E., Otanicar, T. P., Walker, C. A., Nguyen, M., Trimble, S., et al. (2011). Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy, 3(2), 023104.

    Article  Google Scholar 

  94. Tiwari, A. K., Ghosh, P., & Sarkar, J. (2013). Solar water heating using nanofluids—A comprehensive overview and environmental impact analysis. International Journal of Emerging Technology and Advanced Engineering, 3(3), 221–224.

    Google Scholar 

  95. Tong, Y., Kim, J., & Cho, H. (2015). Effects of thermal performance of enclosed-type evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid. Renewable Energy, 83, 463–473.

    Article  Google Scholar 

  96. Topnews. (2009). Retrieved Novomber 7, 2009, from http://www.topnews.in/nanofluids-be-used-make-new-types-cameras-microdevices-and-displays-221378.

  97. Tsai, C. Y., Chien, H. T., Dieng, P. P., Chan, B., Luh, T. Y., & Chen, P. H. (2004). Effect of structural character of Gold Nano particles in Nano fluid on heat pipe thermal performance. Materials Letters, 58, 1461–1465.

    Google Scholar 

  98. Tyagi, H., Phelan, P., & Prasher, R. (2009). Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. Journal of Solar Energy Engineering, 131(4), 041004.

    Article  Google Scholar 

  99. Tzeng, S. C., Lin, C. W., & Huang, K. D. (2005). Heat transfer enhancement of nano fluids in rotary blade coupling of four-wheel-drive vehicles. Acta Mechanica, 179(1–2), 11–23.

    Article  MATH  Google Scholar 

  100. Wang, X. Q., & Mujumdar, A. S. (2008). A review on nanofluids—Part II: Experiments and applications. Brazilian Journal of Chemical Engineering, 25(4), 631–648.

    Article  Google Scholar 

  101. Wang, X., Xu, X., Choi, S., & U, S. (1999). Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer, 13(4), 474–480.

    Article  Google Scholar 

  102. Wang, X. J., Li, X. F., Xu, Y. H., & Zhu, D. S. (2014). Thermal energy storage characteristics of Cu–H2O nanofluids. Energy, 78, 212–217.

    Article  Google Scholar 

  103. Wen, D., & Ding, Y. (2005). Formulation of nanofluids for natural convective heat transfer applications. International Journal of Heat and Fluid Flow, 26(6), 855–864.

    Article  Google Scholar 

  104. Wen, D., Lin, G., Vafaei, S., & Zhang, K. (2009). Review of nanofluids for heat transfer applications. Particuology, 7(2), 141–150.

    Article  Google Scholar 

  105. Wu, S., Zhu, D., Li, X., Li, H., & Lei, J. (2009). Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochimica Acta, 483(1), 73–77.

    Article  Google Scholar 

  106. Xie, H., Wang, J., Xi, T., Liu, Y., & Ai, F. (2002). Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. Journal of Materials Science Letters, 21(19), 1469–1471.

    Article  Google Scholar 

  107. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., & Wu, Q. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91(7), 4568–4572.

    Article  Google Scholar 

  108. Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64.

    Article  Google Scholar 

  109. Xue, Q. Z. (2003). Model for effective thermal conductivity of nanofluids. Physics Letters A, 307(5), 313–317.

    Article  Google Scholar 

  110. Yang, L., Du, K., Bao, S., & Wu, Y. (2012). Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system. International Journal of Refrigeration, 35(8), 2248–2260.

    Article  Google Scholar 

  111. Yu, W., & Choi, S. U. S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model. Journal of Nanoparticle Research, 6(4), 355–361.

    Article  Google Scholar 

  112. Zamzamian, A., Oskouie, S. N., Doosthoseini, A., Joneidi, A., & Pazouki, M. (2011). Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 35(3), 495–502.

    Article  Google Scholar 

  113. Zhang, Z., & Que, Q. (1997). Synthesis structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nano clusters. Wear, 209, 8–12.

    Article  Google Scholar 

  114. Zhu, H. T., Lin, Y. S., & Yin, Y. S. (2004). A novel one-step chemical method for preparation of copper nanofluids. Journal of Colloid and Interface Science, 277(1), 100–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Sadrul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Salehin, S., Monjurul Ehsan, M., Rafat Faysal, S., Sadrul Islam, A.K.M. (2018). Utilization of Nanofluid in Various Clean Energy and Energy Efficiency Applications. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics