Skip to main content

Monitoring Very Low Dose Radiation Damage in DNA Using “Field-Friendly” Biomarkers

  • Conference paper
  • First Online:
Biomarkers of Radiation in the Environment

Abstract

The retrospective assessment of radiation exposures using quantitative biomarkers related to dose is well established for the purpose of biological dosimetry. Among the range of candidate biomarkers that could be used to estimate the dose received by a person, DNA damage-associated markers play a prominent role. One of the hallmarks of ionising radiation, which distinguishes it from many other environmentally relevant agents, is its ability to induce DNA double-strand breaks (DSB) at sites of ionisation clusters along the particle track. These frequently give rise to gross chromosomal rearrangements such as translocations, dicentrics and acentric fragments, the latter of which may form micronuclei in daughter cells. These chromosomal aberrations, and especially dicentrics, are regarded as the “gold standard” for radiation biodosimetry, and a lot of effort has gone into the development of ISO standards, automation and networking to enable robust and efficient dose assessments using these endpoints. However, alternative candidate markers of exposure related to DNA damage have also been investigated in recent years, including protein biomarkers of DSB and gene expression signatures associated with DNA damage signalling. Here the usefulness and applicability of DNA damage-associated biomarkers in environmental exposure assessment is discussed and their adaptability for a “field” setting explored. DNA damage-associated biomarkers of radiation exposure have proven their value in human biodosimetry applications, but all have certain restrictions, especially in the low dose region and in scenarios potentially including other pollutants. Their individual applicability and usefulness very much depends on the exposure scenario in question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainsbury, E. A., Al-Hafidh, J., Bajinskis, A., Barnard, S., Barquinero, J. F., Beinke, C., de Gelder, V., Gregoire, E., Jaworska, A., Lindholm, C., Lloyd, D., Moquet, J., Nylund, R., Oestreicher, U., Roch-Lefévre, S., Rothkamm, K., Romm, H., Scherthan, H., Sommer, S., … Wojcik, A. (2014a). Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency. International Journal of Radiation Biology, 90(2), 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Ainsbury, E. A., Moquet, J., Rothkamm, K., Darroudi, F., Vozilova, A., Degteva, M., Azizova, T. V., Lloyd, D. C., & Harrison, J. (2014b). What radiation dose does the FISH translocation assay measure in cases of incorporated radionuclides for the Southern Urals populations? Radiation Protection Dosimetry, 159(1–4), 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Baeyens, A., Swanson, R., Herd, O., Ainsbury, E., Mabhengu, T., Willem, P., Thierens, H., Slabbert, J. P., & Vral, A. (2011). A semi-automated micronucleus-centromere assay to assess low-dose radiation exposure in human lymphocytes. International Journal of Radiation Biology, 87(9), 923–931.

    Article  CAS  PubMed  Google Scholar 

  • Barber, R. C., Hickenbotham, P., Hatch, T., Kelly, D., Topchiy, N., Almeida, G. M., Jones, G. D., Johnson, G. E., Parry, J. M., Rothkamm, K., & Dubrova, Y. E. (2006). Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene, 25(56), 7336–7342.

    Article  CAS  PubMed  Google Scholar 

  • Barnard, S., Ainsbury, E. A., Al-hafidh, J., Hadjidekova, V., Hristova, R., Lindholm, C., Gil, O. M., Moquet, J., Moreno, M., Rößler, U., Thierens, H., Vandevoorde, C., Vral, A., Wojewódzka, M., & Rothkamm, K. (2015). The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. Radiation Protection Dosimetry, 164(3), 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Bauerschmidt, C., Arrichiello, C., Burdak-Rothkamm, S., Woodcock, M., Hill, M. A., Stevens, D. L., & Rothkamm, K. (2010). Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Research, 38(2), 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Bhatti, P., Preston, D. L., Doody, M. M., Hauptmann, M., Kampa, D., Alexander, B. H., Petibone, D., Simon, S. L., Weinstock, R. M., Bouville, A., Yong, L. C., Freedman, D. M., Mabuchi, K., Linet, M. S., Edwards, A. A., Tucker, J. D., & Sigurdson, A. J. (2007). Retrospective biodosimetry among United States radiologic technologists. Radiation Research, 167(6), 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, R. A., & Winton, D. J. (1996). Determination of spatial patterns of DNA damage and repair in intestinal crypts by multi-cell gel electrophoresis. Journal of Cell Science, 109(Pt 8), 2061–2068.

    Article  CAS  PubMed  Google Scholar 

  • Burdak-Rothkamm, S., Rothkamm, K., Folkard, M., Patel, G., Hone, P., Lloyd, D., Ainsbury, L., & Prise, K. M. (2009). DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields. Mutation Research, 672(2), 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Charbonnel, C., Allain, E., Gallego, M. E., & White, C. I. (2011). Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair, 10(6), 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Darroudi, F. (1998). Detection of total- and partial-body irradiation in a monkey model: A comparative study of chromosomal aberration, micronucleus and premature chromosome condensation assays. International Journal of Radiation Biology, 74(2), 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Degteva, M. O., Shagina, N. B., Shishkina, E. A., Vozilova, A. V., Volchkova, A. Y., Vorobiova, M. I., Wieser, A., Fattibene, P., Monaca, S. D., Ainsbury, E., Moquet, J., Anspaugh, L. R., & Napier, B. A. (2015). Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River. Radiation and Environmental Biophysics, 54(4), 433–444.

    Article  CAS  PubMed  Google Scholar 

  • Fenech, M., & Morley, A. A. (1986). Cytokinesis-block micronucleus method in human lymphocytes: Effect of in vivo ageing and low dose X-irradiation. Mutation Research, 161(2), 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Flegal, F. N., Devantier, Y., McNamee, J. P., & Wilkins, R. C. (2010). Quickscan dicentric chromosome analysis for radiation biodosimetry. Health Physics, 98(2), 276–281.

    Article  CAS  PubMed  Google Scholar 

  • Flegal, F. N., Devantier, Y., Marro, L., & Wilkins, R. C. (2012). Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry. Health Physics, 102(2), 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Georgakilas, A. (2011). Detection of clustered DNA lesions: Biological and clinical applications. World Journal of Biological Chemistry, 2(7), 173–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glei, M., Schneider, T., & Schlormann, W. (2016). Comet assay: An essential tool in toxicological research. Archives of Toxicology, 90(10), 2315–2336.

    Article  CAS  PubMed  Google Scholar 

  • Gotoh, E., Tanno, Y., & Takakura, K. (2005). Simple biodosimetry method for use in cases of high-dose radiation exposure that scores the chromosome number of Giemsa-stained drug-induced prematurely condensed chromosomes (PCC). International Journal of Radiation Biology, 81(1), 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Hayata, I., Kanda, R., Minamihisamatsu, M., Furukawa, A., & Sasaki, M. S. (2001). Cytogenetical dose estimation for 3 severely exposed patients in the JCO criticality accident in Tokai-mura. Journal of Radiation Research, 42(Suppl), S149–S155.

    Article  PubMed  Google Scholar 

  • Horn, S., Barnard, S., & Rothkamm, K. (2011). Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One, 6(9), e25113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IAEA. (2011). Cytogenetic Dosimetry: Applications in preparedness for and response to radiation emergencies. International Atomic Energy Agency.

    Google Scholar 

  • Kowalska, M., Wegierek-Ciuk, A., Brzoska, K., Wojewodzka, M., Meczynska-Wielgosz, S., Gromadzka-Ostrowska, J., Mruk, R., Øvrevik, J., Kruszewski, M., & Lankoff, A. (2017). Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels-the FuelHealth project. Environmental and Molecular Mutagenesis, 24(31), 24223–24234.

    CAS  Google Scholar 

  • Lobrich, M., Rief, N., Kuhne, M., Heckmann, M., Fleckenstein, J., Rube, C., & Uder, M. (2005). In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8984–8989.

    Article  PubMed  PubMed Central  Google Scholar 

  • M’kacher, R., Maalouf, E. E. L., Ricoul, M., Heidingsfelder, L., Laplagne, E., Cuceu, C., Hempel, W. M., Colicchio, B., Dieterlen, A., & Sabatier, L. (2014). New tool for biological dosimetry: Reevaluation and automation of the gold standard method following telomere and centromere staining. Mutation Research, 770, 45–53.

    Article  PubMed  Google Scholar 

  • Moquet, J., Barnard, S., Staynova, A., Lindholm, C., Monteiro Gil, O., Martins, V., Rößler, U., Vral, A., Vandevoorde, C., Wojewódzka, M., & Rothkamm, K. (2017). The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). International Journal of Radiation Biology, 93(1), 58–64.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T. M., Du, L. L., Redon, C., & Russell, P. (2004). Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Molecular and Cellular Biology, 24(14), 6215–6230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantelias, G. E., & Maillie, H. D. (1984). The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological Dosimetry. Radiation Research, 99(1), 140–150.

    Article  CAS  PubMed  Google Scholar 

  • Romm, H., Ainsbury, E., Barnard, S., Barrios, L., Barquinero, J. F., Beinke, C., Deperas, M., Gregoire, E., Koivistoinen, A., Lindholm, C., Moquet, J., Oestreicher, U., Puig, R., Rothkamm, K., Sommer, S., Thierens, H., Vandersickel, V., Vral, A., & Wojcik, A. (2013). Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutation Research, 756(1–2), 174–183.

    Article  CAS  PubMed  Google Scholar 

  • Romm, H., Ainsbury, E., Bajinskis, A., Barnard, S., Barquinero, J. F., Barrios, L., Beinke, C., Puig-Casanovas, R., Deperas-Kaminska, M., Gregoire, E., Oestreicher, U., Lindholm, C., Moquet, J., Rothkamm, K., Sommer, S., Thierens, H., Vral, A., Vandersickel, V., & Wojcik, A. (2014a). Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents. Radiation and Environmental Biophysics, 53(2), 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Romm, H., Ainsbury, E., Barnard, S., Barrios, L., Barquinero, J. F., Beinke, C., Deperas, M., Gregoire, E., Koivistoinen, A., Lindholm, C., Moquet, J., Oestreicher, U., Puig, R., Rothkamm, K., Sommer, S., Thierens, H., Vandersickel, V., Vral, A., & Wojcik, A. (2014b). Validation of semi-automatic scoring of dicentric chromosomes after simulation of three different irradiation scenarios. Health Physics, 106(6), 764–771.

    Article  CAS  PubMed  Google Scholar 

  • Romm, H., Oestreicher, U., Ainsbury, E. A., Moquet, J., Barquinero, J. F., Barrios, L., Beinke, C., Cucu, A., Noditi, M., Popescu, I., Domene, M. M., Prieto, M. J., Filippi, S., Palitti, F., Monteiro Gil, O., Gregoire, E., Hadjidekova, V., Hatzi, V., Pantelias, G., … Wojcik, A. (2017). Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. International Journal of Radiation Biology, 93(1), 110–117.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm, K., & Horn, S. (2009). Gamma-H2AX as protein biomarker for radiation exposure. Annali dell’Istituto superiore di sanita, 45(3), 265–271.

    CAS  PubMed  Google Scholar 

  • Rothkamm, K., & Lloyd, D. (2014). 7.14 – Established and emerging methods of biological dosimetry A2 – Brahme, Anders. Comprehensive biomedical physics (pp. 289–310). Elsevier.

    Google Scholar 

  • Rothkamm, K., & Lobrich, M. (2002). Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment (review). International Journal of Oncology, 21(2), 433–440.

    CAS  PubMed  Google Scholar 

  • Rothkamm, K., & Lobrich, M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5057–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothkamm, K., Kuhne, M., Jeggo, P. A., & Lobrich, M. (2001). Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Research, 61(10), 3886–3893.

    CAS  PubMed  Google Scholar 

  • Rothkamm, K., Kruger, I., Thompson, L. H., & Lobrich, M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and Cellular Biology, 23(16), 5706–5715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothkamm, K., Balroop, S., Shekhdar, J., Fernie, P., & Goh, V. (2007). Leukocyte DNA damage after multi-detector row CT: A quantitative biomarker of low-level radiation exposure. Radiology, 242(1), 244–251.

    Article  PubMed  Google Scholar 

  • Rothkamm, K., Barnard, S., Ainsbury, E. A., Al-Hafidh, J., Barquinero, J.-F., Lindholm, C., Moquet, J., Perälä, M., Roch-Lefèvre, S., Scherthan, H., Thierens, H., Vral, A., & Vandersickel, V. (2013a). Manual versus automated gamma-H2AX foci analysis across five European laboratories: Can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutation Research, 756(1–2), 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm, K., Beinke, C., Romm, H., Badie, C., Balagurunathan, Y., Barnard, S., Bernard, N., Boulay-Greene, H., Brengues, M., De Amicis, A., De Sanctis, S., Greither, R., Herodin, F., Jones, A., Kabacik, S., Knie, T., Kulka, U., Lista, F., Martigne, P., … Abend, M. (2013b). Comparison of established and emerging biodosimetry assays. Radiation Research, 180(2), 111–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothkamm, K., Horn, S., Scherthan, H., Rössler, U., De Amicis, A., Barnard, S., Kulka, U., Lista, F., Meineke, V., Braselmann, H., Beinke, C., & Abend, M. (2013c). Laboratory intercomparison on the gamma-H2AX foci assay. Radiation Research, 180(2), 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm, K., Barnard, S., Moquet, J., Ellender, M., Rana, Z., & Burdak-Rothkamm, S. (2015). DNA damage foci: Meaning and significance. Environmental and Molecular Mutagenesis, 56(6), 491–504.

    Article  CAS  PubMed  Google Scholar 

  • Sak, A., Grehl, S., Erichsen, P., Engelhard, M., Grannass, A., Levegrün, S., Pöttgen, C., Groneberg, M., & Stuschke, M. (2007). Gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: Dependence on the dose-distribution, irradiated site and time from start of treatment. International Journal of Radiation Biology, 83(10), 639–652.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, M. S., Filomeni, E., François, M., Collins, S. R., Cooper, T., Glatz, R. V., Taylor, P. W., Fenech, M., & Leifert, W. R. (2013). Exposure of insect cells to ionising radiation in vivo induces persistent phosphorylation of a H2AX homologue (H2AvB). Mutagenesis, 28(5), 531–541.

    Article  CAS  PubMed  Google Scholar 

  • Sigurdson, A. J., Bhatti, P., Preston, D. L., Doody, M. M., Kampa, D., Alexander, B. H., Petibone, D., Yong, L. C., Edwards, A. A., Ron, E., & Tucker, J. D. (2008a). Routine diagnostic X-ray examinations and increased frequency of chromosome translocations among U.S. radiologic technologists. Cancer Research, 68(21), 8825–8831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurdson, A. J., Ha, M., Hauptmann, M., Bhatti, P., Sram, R. J., Beskid, O., Tawn, E. J., Whitehouse, C. A., Lindholm, C., Nakano, M., Kodama, Y., Nakamura, N., Vorobtsova, I., Oestreicher, U., Stephan, G., Yong, L. C., Bauchinger, M., Schmid, E., Chung, H. W., … Tucker, J. D. (2008b). International study of factors affecting human chromosome translocations. Mutation Research, 652(2), 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotnik, N. V., Azizova, T. V., Darroudi, F., Ainsbury, E. A., Moquet, J. E., Fomina, J., Lloyd, D. C., Hone, P. A., & Edwards, A. A. (2015). Verification by the FISH translocation assay of historic doses to Mayak workers from external gamma radiation. Radiation and Environmental Biophysics, 54(4), 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Terzoudi, G. I., Pantelias, G., Darroudi, F., Barszczewska, K., Buraczewska, I., Depuydt, J., Georgieva, D., Hadjidekova, V., Hatzi, V. I., Karachristou, I., Karakosta, M., Meschini, R., M’Kacher, R., Montoro, A., Palitti, F., Pantelias, A., Pepe, G., Ricoul, M., Sabatier, L., … Wojcik, A. (2017). Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay). International Journal of Radiation Biology, 93(1), 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Thaiparambil, J., Mansour, O., & El-Zein, R. (2017). Effect of benzo[a]pyrene on spindle mis-orientation and fidelity of chromosome segregation in lung epithelial BEAS-2B cells. Journal of Toxicology.

    Google Scholar 

  • Thierens, H., Vral, A., Barbe, M., Aousalah, B., & De Ridder, L. (1999). A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay. Mutation Research, 445(1), 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Thierens, H., Vral, A., Morthier, R., Aousalah, B., & De Ridder, L. (2000). Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay. Mutagenesis, 15(3), 245–249.

    Article  CAS  PubMed  Google Scholar 

  • Thierens, H., Vral, A., Vandevoorde, C., Vandersickel, V., de Gelder, V., Romm, H., Oestreicher, U., Rothkamm, K., Barnard, S., Ainsbury, E., Sommer, S., Beinke, C., & Wojcik, A. (2014). Is a semi-automated approach indicated in the application of the automated micronucleus assay for triage purposes? Radiation Protection Dosimetry, 159(1–4), 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, J. D., & Luckinbill, L. S. (2011). Estimating the lowest detectable dose of ionizing radiation by FISH whole-chromosome painting. Radiation Research, 175(5), 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Vozilova, A. V., Shagina, N. B., Degteva, M. O., Edwards, A. A., Ainsbury, E. A., Moquet, J. E., Hone, P., Lloyd, D. C., Fomina, J. N., & Darroudi, F. (2012). Preliminary FISH-based assessment of external dose for residents exposed on the Techa River. Radiation Research, 177(1), 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Vozilova, A. V., Shagina, N. B., Degteva, M. O., Moquet, J., Ainsbury, E. A., & Darroudi, F. (2014). FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: Second set of analysis of the Techa River Cohort. Radiation Protection Dosimetry, 159(1–4), 34–37.

    Article  CAS  PubMed  Google Scholar 

  • Vral, A., Thierens, H., & De Ridder, L. (1997). In vitro micronucleus-centromere assay to detect radiation-damage induced by low doses in human lymphocytes. International Journal of Radiation Biology, 71(1), 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Vral, A., Decorte, V., Depuydt, J., Wambersie, A., & Thierens, H. (2016). A semiautomated FISHbased micronucleuscentromere assay for biomonitoring of hospital workers exposed to low doses of ionizing radiation. Molecular Medicine Reports, 14(1), 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahab, M. A., Nickless, E. M., Najar-M’kacher, R., Parmentier, C., Podd, J. V., & Rowland, R. E. (2008). Elevated chromosome translocation frequencies in New Zealand nuclear test veterans. Cytogenetic and Genome Research, 121(2), 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Wan, R., Mo, Y., Zhang, Z., Jiang, M., Tang, S., & Zhang, Q. (2017). Cobalt nanoparticles induce lung injury. DNA Damage and Mutations in Mice, 14(1), 38.

    Google Scholar 

  • Yong, L. C., Sigurdson, A. J., Ward, E. M., Waters, M. A., Whelan, E. A., Petersen, M. R., Bhatti, P., Ramsey, M. J., Ron, E., & Tucker, J. D. (2009). Increased frequency of chromosome translocations in airline pilots with long-term flying experience. Occupational and Environmental Medicine, 66(1), 56–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Rothkamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rothkamm, K., Burdak-Rothkamm, S. (2022). Monitoring Very Low Dose Radiation Damage in DNA Using “Field-Friendly” Biomarkers. In: Wood, M.D., Mothersill, C.E., Tsakanova, G., Cresswell, T., Woloschak, G.E. (eds) Biomarkers of Radiation in the Environment. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2101-9_9

Download citation

Publish with us

Policies and ethics