Skip to main content

On the Prospect of Application of Point-Contact Sensors to Solving the Global Security Problems: An Analytical Review

  • Conference paper
  • First Online:
  • 406 Accesses

Abstract

In recent years, the problem of CBRN materials and explosives has attracted much attention because the threat they pose is high and tends to increase. Effective protection of critical infrastructure against CBRNE threats can be achieved by developing breakthrough technologies to create a new generation of portable, multifunctional, autonomous, energy-efficient, and low-cost devices. One of the advanced approaches to creating new innovative tools to successfully control CBRNE agents can be based on high-tech solutions involving point-contact sensors. Research and development of point-contact sensors is an emerging trend in modern sensorics. To better understand the mechanisms of point-contact sensors operation and their potential to solve the global security problems we pay attention to some of the original properties of Yanson point contacts. They are totally different from those of traditional sensors based on the principle of electric conduction change and, among others, exploit use of tunnelling mechanisms. Special attention is paid to the potential use of point-contact sensors in the development of combined devices and technologies, involving such competing schemes as THz techniques, to detect terror threats and CBRNE agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. European Union: European Commission (5.5.2014). Communication from the Commission to the European parliament, the Council, the European economic and social Committee and the Committee of the regions on a new EU approach to the detection and mitigation of CBRN-E risks. COM(2014) 247 final, Brussels.

    Google Scholar 

  2. European Union: Europol (2018) European Union terrorism situation and trend report 2018. European Union Agency for Law Enforcement Cooperation, The Hague

    Google Scholar 

  3. Kamarchuk GV, Pospelov AP, Kamarchuk LV, Kushch IG (2015) Point-contact sensors and their medical applications for breath analysis: a review. In: Karachevtsev VA (ed) Nanobiophysics: fundamentals and applications. Pan Stanford Publishing, Singapore

    Google Scholar 

  4. Pereira MF, Shulika O (eds) (2011) Terahertz and mid infrared radiation: generation, detection and applications (NATO science for peace and security series B: physics and biophysics). Springer, Dordrecht

    Google Scholar 

  5. Oriaku CI, Pereira MF (2017) Analytical solutions for semiconductor luminescence including Coulomb correlations with applications to dilute bismides. J Opt Soc Am B 34:321

    Google Scholar 

  6. Pereira MF (2018) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11:2

    Article  ADS  Google Scholar 

  7. Pereira MF (2016) The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain without in-version conditions. Appl Phys Lett 109:222102

    Article  ADS  Google Scholar 

  8. Pereira MF, Zubelli PJ, Winge D, Wacker A, Rondrigues SA, Anfertev V, Vaks V (2017) Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys Rev B 96:045306

    Article  ADS  Google Scholar 

  9. Pereira MF, Anfertev V, Zubelli JP, Vaks V (2017) Terahertz generation by gigahertz multiplication in superlattices. J Nanophotonics 11:046022

    Article  ADS  Google Scholar 

  10. Kamarchuk GV, Pospelov OP, Yeremenko AV, Faulques E, Yanson IK (2006) Point-contact sensors: new prospects for a nanoscale sensitive technique. Europhys Lett 76:575

    Article  ADS  Google Scholar 

  11. Kamarchuk GV, Kolobov IG, Khotkevich AV, Yanson IK, Pospelov AP, Levitsky IA, Euler WB (2008) New chemical sensors based on point heterocontact between single wall carbon nanotubes and gold wires. Sensors Actuators B Chem 134:1022

    Article  Google Scholar 

  12. Kushch I, Korenev N, Kamarchuk L, Pospelov A, Kravchenko A, Bajenov L, Kabulov M, Amann A, Kamarchuk G (2015) On the importance of developing a new generation of breath tests for Helicobacter pylori detection. J Breath Res 9:047109

    Article  Google Scholar 

  13. Yanson IK (1974) Nonlinear effects in the electric conductivity of point junctions and electron-phonon interaction in normal metals. J Exp Theor Phys 39:506

    ADS  Google Scholar 

  14. Khotkevich AV, Yanson IK (1995) Atlas of point contact spectra of electron-phonon interactions in metals. Kluwer Academic Publishers, Boston/Dordrecht/London

    Book  Google Scholar 

  15. Kulik IO, Omelyanchuk AN, Shekhter RI (1977) Electrical conductivity of point microcontacts and the spectroscopy of phonons and impurities in normal metals. Sov J Low Temp Phys 3:740

    Google Scholar 

  16. Sharvin YV (1965) A possible method for studying Fermi surfaces. J Exp Theor Phys 21:655

    ADS  Google Scholar 

  17. Kulik IO, Yanson IK (1978) Microcontact spectroscopy of phonons in the dirty limit. Sov J Low Temp Phys 4:596

    Google Scholar 

  18. Kulik IO, Shekhter RI, Shkorbatov AG (1981) Point-contact spectroscopy of electron-phonon coupling in metals with a small electron mean free path. J Exp Theor Phys 54:1130

    Google Scholar 

  19. Naidyuk YG, Yanson IK (2005) Point-contact spectroscopy. Springer, New York

    Book  Google Scholar 

  20. Krans, J.M., Ruitenbeek, J.M. van, Fisun, V.V., Yanson, I.K., de Jongh, L.J. (1995). The signature of conductance quantization in metallic point contacts. Nature (London, U.K.), 375, 767

    Google Scholar 

  21. Pospelov AP, Pilipenko AI, Kamarchuk GV, Fisun VV, Yanson IK, Faulques E (2015) A new method for controlling the quantized growth of dendritic nanoscale point contacts via switchover and shell effects. J Phys Chem C 119:632

    Article  Google Scholar 

  22. Savitsky AV, Pospelov OP, Kamarchuk GV (2010) Doslidzhennia elektrychnoi providnosti heterokontaktiv Au-SWNT v hazovomu seredovyshchi (Investigation of electrical conductivity of heterocontacts Au-SWNT in a gas environment). J Kharkiv National University V.N. Karazin. Series Physics 915:40

    Google Scholar 

  23. Maxwell JC (1904) A treatise of electricity and magnetism. Clarendon, Oxford

    Google Scholar 

  24. Kamarchuk GV, Pospelov AP, Savitsky AV, Koval LV (2014) Nonlinear cyclical transport phenomena in copper point contacts. Low Temp Phys 40:937

    Article  ADS  Google Scholar 

  25. Pospelov AP, Kamarchuk GV, Alexandrov YL, Zaika AS, Yeremenko AV, Faulques E (2004) New development of impedance spectroscopy. In: Faulques EC, Perry DL, Yeremenko AV (eds) Spectroscopy of emerging materials (NATO science series). Kluwer Academic Publishers, Boston/Dordrecht/London

    Google Scholar 

  26. Richards A (2015) Conceptualizing terrorism. Oxford University Press, New York

    Book  Google Scholar 

  27. Kamarchuk GV, Pospelov AP, Yeremenko AV, Faulques E, Yanson IK (2007) New nanosensors for monitoring gas media. Sensor Electron Microsyst Technol (3):46

    Google Scholar 

  28. Pilipenko AI, Pospelov AP, Kamarchuk GV, Bondarenko IS, Shablo AA, Bondarenko SI (2011) Point-contact sensory nanostructure modeling. Funct Mater 18:324

    Google Scholar 

  29. Pospelov AP, Kamarchuk GV, Savytskyi AV, Sakhnenko MD, Ved MV, Vakula VL (2017) Macroscopic simulation of atom-sized structures of functional materials: phenomenology of the elongated electrode system. Funct Mater 24:463

    Article  Google Scholar 

  30. Pospelov A, Kamarchuk G, Sakhnenko N, Gudimenko V, Ved M (2018) Ternarnyi splav Co-Mo-W yak chutlyvyi material nanostrukturnoho hazovoho sensora (Ternary alloy Co-Mo-W as a sensitive material of a nanostructured gas sensor). Bull Natl Tech Univ “Kharkiv Polytechnic Institute” Ser Chem Chem Technol Environ 50:1269

    Google Scholar 

  31. Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature (London, U.K.) 400:144

    Article  ADS  Google Scholar 

  32. Yanson AI, Yanson IK, van Ruitenbeek JM (2000) Supershell structure in alkali metal nanowires. Phys Rev Lett 84:5832

    Article  ADS  Google Scholar 

  33. Chubov PN, Yanson IK, Akimenko AI (1982) Electron-phonon interaction in aluminum point contacts. Sov J Low Temp Phys 8:32

    Google Scholar 

  34. Kushch IG, Korenev NM, Kamarchuk LV, Pospelov AP, Alexandrov YL, Kamarchuk GV (2011) Sensors for breath analysis: an advanced approach to express diagnostics and monitoring of human diseases. In: Mikhalovsky S, Khajibaev A (eds) Biodefence (NATO science for peace and security series a: chemistry and biology). Springer, Dordrecht

    Google Scholar 

  35. Zohora SE, Khan AM, Srivastava AK, Hundewal N (2013) Chemical sensors employed in electronic noses: a review. Int J Soft Comput Eng 3:405

    Google Scholar 

  36. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ (2012) Management of Helicobacter pylori infection – the Maastricht IV/ Florence consensus report. Gut 61:646

    Article  Google Scholar 

  37. Garza-González E, Perez-Perez GI, Maldonado-Garza HJ, Bosques-Padilla FJ (2014) A review of Helicobacter pylori diagnosis, treatment, and methods to detect eradication. World J Gastroenterol 20:1438

    Article  Google Scholar 

  38. Cizginer S, Ordulu Z, Kadayifci A (2014) Approach to Helicobacter pylori infection in geriatric population. World J Gastrointest Pharmacol Ther 5:139

    Article  Google Scholar 

  39. Graham DY (2000) Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol 35:90

    Google Scholar 

  40. Ferreccio C, Rollán A, Harris PR, Serrano C, Gederlini A, Margozzini P, Gonzalez C, Aguilera X, Venegas A, Jara A (2007) Gastric cancer is related to early Helicobacter pylori infection in a high-prevalence country. Cancer Epidemiol Biomark Prev 16:662

    Article  Google Scholar 

  41. National Research Council (2003) The polygraph and lie detection. The National Academies Press, Washington, DC

    Google Scholar 

  42. Kamarchuk GV, Pospelov AP, Harbuz DA, Gudimenko VA, Kamarchuk LV, Zaika AS, Pletnev AM, Kravchenko AV (2017) Nanostrukturnye tochechno-kontaktnye sensory dlya diagnostiki kantserogennykh shtammov bakterii Helicobacter pylori (Nanostructural point-contact sensors for diagnostics of carcinogenic strains of Helicobacter pylori). Biophys Bull 2:66

    Google Scholar 

  43. Kamarchuk GV, Pospelov AP, Savytskyi AV, Herus AO, Doronin YS, Vakula VL, Faulques E (2019) Conductance quantization as a new selective sensing mechanism in dendritic point contacts. SN Appl Sci 1:244

    Google Scholar 

  44. Damaskin BB, Petriy OA, Tsirlina GA (2006) Elektrokhimiya (Electrochemistry). Kolos, Moscow

    Google Scholar 

  45. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv 9:015022

    Article  ADS  Google Scholar 

  46. Apostolakis A, Pereira MF (2019) Numerical studies of superlattice multipliers performance. Quantum Sens Nano Electron Photon XVI:109262

    Google Scholar 

  47. Apostolakis A, Pereira MF (2019) Potential and limits of superlattice multipliers coupled to different input power sources. J Nanophoton 13:036017

    Article  Google Scholar 

  48. Pereira MF, Faragai IA (2014) Coupling of THz radiation with intervalence band transitions in microcavities. Opt Express 22:3439

    Article  ADS  Google Scholar 

  49. Winge DO, Franckié M, Verdozzi C, Wacker A (2016) Simple electron-electron scattering in non-equilibrium Green’s function simulations. J Phys Conf Ser 696:012013

    Article  Google Scholar 

  50. Pereira MF, Shulika O (2014) Terahertz and mid infrared radiation: detection of explosives and CBRN (using te-rahertz). NATO science for peace and security series-B: physics and biophysics. Springer, Dordrecht

    Google Scholar 

  51. Apostolakis A, Pereira MF (2020) Superlattice nonlinearities for Gigahertz-Terahertz generation in harmonic multipliers. Nanophotonics 9(12):3941–3952. https://doi.org/10.1515/nanoph-2020-0155

    Article  Google Scholar 

  52. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kamarchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamarchuk, G. et al. (2021). On the Prospect of Application of Point-Contact Sensors to Solving the Global Security Problems: An Analytical Review. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_15

Download citation

Publish with us

Policies and ethics