Skip to main content

Establishing a Diagnosis: Inventorying, Monitoring and Assessing

  • Chapter
  • First Online:
  • 207 Accesses

Abstract

Improving air quality is a major challenge for public health and the environment. Assessing the contribution of agricultural activity to air pollution and the resulting impacts is a prerequisite for recommending mitigation practices. More important, their long-term adoption can only be justified by performing a real-time assessment of their effectiveness. Since the 1990s, using emission indicators, air contamination levels and environmental impacts has indeed become a widespread means of supporting decision-making at different levels, risk management and public policy assessment. However, this assessment is made difficult owing to the complex network of processes involved and the variability in pollutant emission and deposition. This chapter first details the methodologies implemented for emission inventories, used to better target the largest contributing sources, to check whether national commitments have been met, and to assess the trends. It also presents observation networks established to monitor background air pollution, deposition as precipitation, gases and particles in rural and forest areas, and impacts on terrestrial ecosystems. Finally, it outlines the indicators used to assess the impacts of agricultural practices on human and ecosystem health via the atmospheric compartment and it gives examples of their practical use to manage pollution risks, evaluate agricultural practices or compare agricultural products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    European Monitoring and Evaluation Programme/European Environment Agency, 2016. Air Pollutant Emission Inventory Guidebook, https://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook/emep

  2. 2.

    Intergovernmental Panel on Climate Change; IPCC Guidelines for National Greenhouse Gas Inventories, 2006, https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

  3. 3.

    https://land.copernicus.eu/pan-european/corine-land-cover

  4. 4.

    Crop Environment Resource Synthesis-Environnement et grandes cultures: https://www6.versailles-grignon.inrae.fr/ecosys_eng/Productions/Softwares-Models/CERES-EGC

  5. 5.

    Service de la statistique et de la prospective.

  6. 6.

    A multi-scale chemistry-transport model for atmospheric composition analysis and forecast, http://www.lmd.polytechnique.fr/chimere/

  7. 7.

    https://www.lcsqa.org/fr/actualite/mera-observatoire-national-mesure-evaluation-zone-rurale-pollution-atmospherique-longue-di (available in French only).

  8. 8.

    http://www.prevair.org/ (available in French only).

  9. 9.

    http://www1.onf.fr/renecofor/@@index.html

  10. 10.

    http://www.patrinat.fr/fr/biosurveillance-des-retombees-atmospheriques-metalliques-par-les-mousses-bramm-6071 (available in French only).

  11. 11.

    https://icpvegetation.ceh.ac.uk/

References

  • Anses (2017) Proposition de modalités pour une surveillance des pesticides dans l’air ambiant. Rapport n° 2014-SA-0200, Maisons-Alfort, Anses

    Google Scholar 

  • Bockstaller C, Guichard L, Makowski D et al (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149

    Article  Google Scholar 

  • Bockstaller C, Vertès F, Aarts F et al (2012) Méthodes d’évaluation environnementale et choix des indicateurs. In: Peyraud J-L, Cellier P (coord.) Les flux d’azote liés aux élevages réduire les pertes rétablir les équilibres, expertise scientifique collective, rapport Inra, France, pp 335–412.

    Google Scholar 

  • Bockstaller C, Feschet P, Angevin F (2015) Issues in evaluating sustainability of farming systems with indicators. OCL 22:12

    Article  Google Scholar 

  • Capillon A, Gabrielle B, Girardin P et al (2005) Méthodes d’évaluation des impacts environnementaux des pratiques agricoles. Inra, département Environnement et Agronomie, Paris, 51 p

    Google Scholar 

  • Citepa (2019a) Rapport national d’inventaire des émissions de polluants atmosphériques en France au titre de la Convention sur la pollution atmosphérique transfrontalière à longue distance et de la directive européenne concernant la réduction des émissions nationales de certains polluants atmosphériques (rapport CEE-NU)

    Google Scholar 

  • Citepa (2019b) Rapport national d’inventaire pour la France au titre de la Convention-cadre des Nations unies sur les changements climatiques et du Protocole de Kyoto (rapport CCNUCC)

    Google Scholar 

  • Colomb V, Ait Amar S, Basset Mens C et al (2015) Database for agricultural products: high quality data for producers and environmental labelling. OCL, p 22

    Google Scholar 

  • Corpen (2006) Des indicateurs AZOTE pour gérer des actions de maîtrise des pollutions à l’échelle de la parcelle de l’exploitation et du territoire. Ministère de l’Écologie et du Développement durable, Paris

    Google Scholar 

  • Devillers J, Farret R, Girardin P et al (2005) Indicateurs pour évaluer les risques liés à l’utilisation des pesticides. Lavoisier, Londres/Paris/New York, p 280

    Google Scholar 

  • EEA (1999) EMEP/CORINAIR Atmospheric emission inventory guidebook, 2nd ed 1999. Publication EEA, http://www.eea.europa.eu/publications/EMEPCORINAIR

  • Emberson LD, Ashmore MR, Cambridge HM et al (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  Google Scholar 

  • EPA (1994) Emission factor documentation for AP-42 section 9.2.2 Pesticide Application. Final Report, 75 p

    Google Scholar 

  • Eugène M, Sauvant D, Nozière P et al (2019) A new Tier 3 method to calculate methane emission inventory for ruminants. J Environ Manag 231:982–988

    Article  Google Scholar 

  • Faburé J, Rogier S, Loubet B et al (2011) Synthèse bibliographique sur la contribution de l’agriculture à l’émission de particules vers l’atmosphère: identification de facteurs d’émission. Rapport final projet de recherche Inra-Ademe, 164 p

    Google Scholar 

  • Fuhrer J (1994) The critical level for ozone to protect agricultural crops. An assessment of data from European open-top chamber experiments. Schriftenreihe FAC 16:42–57

    Google Scholar 

  • Gabrielle B, Gagnaire N (2008) Life-cycle assessment of straw use in bio-ethanol production: a case-study based on deterministic modelling. Biomass Bioenergy 32:431–441

    Article  CAS  Google Scholar 

  • Garcia L, Génermont S, Bedos C et al (2012) Accounting for surface cattle slurry in ammonia volatilization models: the case of Volt’Air. Soil Sci Soc Am J 76:2184–2194

    Article  CAS  Google Scholar 

  • Génermont S, Ramanantenasoa MMJ, Dufossé K et al (2018) Data on spatio-temporal representation of mineral N fertilization and manure N application as well as ammonia volatilization in French regions for the crop year 2005/06. Data in Brief 21:1119–1124

    Article  Google Scholar 

  • Girardin P, Bockstaller C, van der Werf HMG (1999) Indicators: tools to evaluate the environmental impacts of farming systems. J Sustain Agric 13:5–21

    Article  Google Scholar 

  • Gouzy A, Farret R, Le Gal AC (2005) Détermination des pesticides à surveiller dans le compartiment aérien: approche par hiérarchisation. Rapport Ineris n° DRC/MECO-CGR-143/2005-AGo, 139 p

    Google Scholar 

  • Grünhage L, Pleijel H, Mills G et al (2012) Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield grain mass and protein yield. Environ Pollut 165:147–157

    Article  Google Scholar 

  • Guiral C, Bedos C, Ruelle B et al (2016) Les émissions de produits phytopharmaceutiques dans l’air. Facteurs d’émissions outils d’estimation des émissions évaluations environnementales et perspectives de recherche. Rapport final projet de recherche Inra-Ademe, 231 p

    Google Scholar 

  • Hamaoui-Laguel L, Meleux F, Beekmann M et al (2014) Improving ammonia emissions in air quality modelling for France. Atmos Environ 92:584–595

    Article  CAS  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423

    Article  CAS  Google Scholar 

  • Hellweg S, Milà i Canals L (2014) Emerging approaches challenges and opportunities in life cycle assessment. Science 344:1109–1113

    Article  CAS  Google Scholar 

  • Hénault C, Bizouard F, Laville P et al (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database. Glob Chang Biol 1:115–127

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B 273:593–610

    Article  CAS  Google Scholar 

  • Karlsson PE, Uddling J, Braun S et al (2004) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294

    Article  CAS  Google Scholar 

  • Lairez J, Feschet P, Aubin J et al (2015) Évaluer la durabilité en agriculture. Guide pour l’analyse multicritère en productions animales et végétales. Éditions Quæ, Versailles

    Google Scholar 

  • Lamaud E, Labatut A, Fontan J et al (1994) Biosphere atmosphere exchanges: ozone and aerosol dry deposition velocities over a pine forest. Environ Monit Assess 31:175–181

    Google Scholar 

  • Le Cadre E (2004) Modélisation de la volatilisation d’ammoniac en interaction avec les processus chimiques et biologiques du sol. Le modèle Volt’Air. Thèse de doctorat de l’Institut national agronomique Paris-Grignon, Sciences du sol et du bioclimat, Inra EGC Grignon, 211 p

    Google Scholar 

  • Menzi H, Katz PE, Fahrni M et al (1998) A simple empirical model based on regression analysis to estimate ammonia emissions after manure application. Atmos Environ 32(3):301–307

    Article  CAS  Google Scholar 

  • Mills G, Harmens H (2011) Ozone pollution: a hidden threat for food security. Rapport par le PIC Vegetation de la CLRTAP. ICP Vegetation Coordination Center, CEH, Bangor, 116 p

    Google Scholar 

  • Mills G, Buse A, Gimeno BS et al (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Misselbrook TH, Scholefield D, Sutton MA (2004) A simple process based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20:365–372

    Article  Google Scholar 

  • Parnaudeau V, Reau R, Dubrulle P (2012) Un outil d’évaluation des fuites d’azote vers l’environnement à l’échelle du système de culture: le logiciel Syst’N. Innov Agron 21:59–70

    Google Scholar 

  • Pierlot F et al (2016) Projet EQUIPE. Évaluation de la qualité prédictive de 26 indicateurs de risque de transfert de pesticides dans les eaux et du modèle MACROitle. In: AFPP, 23e Conférence du COLUMA. Journées internationales sur la lutte contre les mauvaises herbes, Dijon, 6–8 décembre 2016, pp 1-10

    Google Scholar 

  • Ramanantenasoa MMJ, Gilliot J-M, Mignolet C et al (2018) A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France. Sci Total Environ 645:205–219

    Article  CAS  Google Scholar 

  • Renaud-Gentié C, Dijkman TJ, Bjørn A, Birkved M (2015) Pesticide emission modelling and freshwater ecotoxicity assessment for Grapevine LCA: adaptation of PestLCI 2.0 to viticulture. Int J Life Cycle Assess 20:1528–1543

    Article  Google Scholar 

  • Roger M, Bruen M (1998) Choosing realistic values of indifference preference and veto thresholds for use with environmental criteria within ELECTRE. Eur J Oper Res 107:542–551

    Article  Google Scholar 

  • Rolland M-N, Gabrielle B, Laville P et al (2010) High-resolution inventory of NO emissions from agricultural soils over the Île-de-France region. Environ Pollut 158:711–722

    Article  CAS  Google Scholar 

  • Rosenbaum R et al (2008) USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532

    Article  CAS  Google Scholar 

  • Roy B (1985) Méthodologie multicritère d’aide à la décision. Ecomonica, Paris

    Google Scholar 

  • van der Werf HM, Zimmer C (1998) An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere 36:2225–2249

    Article  Google Scholar 

  • Woodrow JSE, Sieber JSN, Baker L (1997) Correlation techniques for estimating pesticide volatilization flux and downwind concentrations. Environ Sci Technol 31:523–529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Génermont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Génermont, S. et al. (2020). Establishing a Diagnosis: Inventorying, Monitoring and Assessing. In: Bedos, C., Génermont, S., Castell, JF., Cellier, P. (eds) Agriculture and Air Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2058-6_8

Download citation

Publish with us

Policies and ethics