Skip to main content

Central Nervous System (CNS)

  • Chapter
  • First Online:
Book cover Vitamin C in Human Health and Disease
  • 1102 Accesses

Abstract

Functionally, the CNS consists of a sensory and motor system, and both usually collaborate with each other for proper functions. Structurally, it consists of the brain located in the cranial cavity and the spinal cord located in the vertebral canal. Generally, the brain occupies approximately 2% of the total body weight. It expends approximately 20% of the total oxygen inhaled through the respiratory system and expends roughly 25% of the D-glucose ingested through the GI system. Thus, the brain is one of the organs generating oxygen free radicals most vigorously so that some apparatus for its protection from oxidative damages should be inevitable. The organ containing the highest concentration of vitamin C in the body is the brain. The average concentration of vitamin C in the human peripheral blood is approximately 40~60 μM. However, its concentration in the neuronal cytoplasm reaches approximately 10 mM, about 200 times as high as the human serum concentration. The cytoplasmic concentration of vitamin C in astrocytes or microglial cells, which usually consume 20% of the total amount of oxygen neurons consume, is about 1~2 mM suggesting that the concentration of vitamin C in brain cells seems to be closely related to the consumption amount of oxygen. Vitamin C may play a critical role in CNS development, especially in the development of the cerebellum. Additionally, we also observed defects in motor function upon vitamin C deficiency. We presented morphological evidence for the defects in motor function with atrophic changes of the granule cells and Purkinje cells in the adult cerebellum of Gulo(−/−) mice upon vitamin C deficiency. Conclusively, vitamin C deficiency during gestation may induce intraparenchymal hemorrhages and severe defects in the development of the cerebellum. Several neurodegenerative disorders such as Alzheimer disease, Parkinson disease, and Huntington disease are known to be closely related with ROS in terms of their pathogenesis. Dementia is a general designation of mental deterioration. Parkinson disease is a slowly progressive disease characterized by several motor dysfunctions such as a masklike face, a characteristic tremor of the resting muscles, a slowing of voluntary movements, a festinating gait, a peculiar posture, and weakness of the muscles. Considering again the relationship between the oxygen consumption proportion (20%) of neurons and the extremely high concentration of vitamin C (10 mM) in the neuronal cytoplasm, oxidative stress seems to have an essential role in this disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agus DB, Gambhir SS, Pardridge WM, Speilholz C, Baselga J, Vera JC. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest. 1997;100:2842–8.

    Article  CAS  Google Scholar 

  • Angelow S, Haselbach M, Galla HJ. Functional characterization of the active ascorbic acid transport into cerebrospinal fluid using primary cultured choroid plexus cells. Brain Res. 2003;988:105–13.

    Article  CAS  Google Scholar 

  • Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P. Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem. 1997;68:2038–45.

    Article  CAS  Google Scholar 

  • Berger UV, Lu XC, Liu W, Tanf Z, Slusher BS, Hediger MA. Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT-2 in rat brain. J Neurochem. 2003;86:896–906.

    Article  CAS  Google Scholar 

  • Ciani E, Groneng L, Voltattorni M, Rolseth V, Contestabile A, Paulsen RE. Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res. 1996;728:1–6.

    Article  CAS  Google Scholar 

  • Dhigra D, Parle M, Kulkarni SK. Comparative brain cholinesterase-inhibiting activity of Glycyrrhiza glabra, Myristica fragrans, ascorbic acid, and metrifonate in mice. J Med Food. 2006;9:281–3.

    Article  Google Scholar 

  • Engelhart MJ, Geerings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287:3223–9.

    Article  CAS  Google Scholar 

  • Garcia ML, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F. Sodium vitamin C cotransporter SVCT 2 is expressed in hypothalamic glial cells. Glia. 2005;50:32–47.

    Article  Google Scholar 

  • Grunewald RA. Ascorbic acid in the brain. Brain Res Rev. 1993;18:123–33.

    Article  CAS  Google Scholar 

  • Hakvoort A, Haselbach M, Galla HJ. Active transport properties of porcine choroid plexus cells in culture. Brain Res. 1998;795:247–56.

    Article  CAS  Google Scholar 

  • Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634–58.

    Article  CAS  Google Scholar 

  • Hediger MA. New view at vitamin C. Nat Med. 2002;8:445–6.

    Article  CAS  Google Scholar 

  • Hillered L, Persson L, Bolander HG, Hallstrom A, Ungerstedt U. Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neurosci Lett. 1988;95:286–90.

    Article  CAS  Google Scholar 

  • Hirschmann JV, Raugi GJ. Adult scurvy. J Am Acad Dermatol. 1999;41:895–906.

    Article  CAS  Google Scholar 

  • Hornig D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann N Y Acad Sci. 1975;258:103–18.

    Article  CAS  Google Scholar 

  • Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Vitamin C transport in oxidized form across the rat blood-brain barrier. Invest Ophalmol Vis Sci. 2004;45:1232–9.

    Article  Google Scholar 

  • Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RJ, Boyd TA, Golde DW, Connolly ES Jr. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci U S A. 2001;98:11720–4.

    Article  CAS  Google Scholar 

  • Huang J, May JM. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by beta-amyloid. Brain Res. 2006;1097:52–8.

    Article  CAS  Google Scholar 

  • Hughes RE, Hurley RJ, Jones PR. The retention of ascorbic acid by guinea-pig tissues. Br J Nutr. 1971;26:433–8.

    Article  CAS  Google Scholar 

  • Kim H, Kim Y, Bae S, Lim SH, Jang M, Choi J, Jeon J, Hwang YI, Kang JS, Lee WJ. Vitamin C deficiency causes severe defects in the development of the neonatal cerebellum and in the motor behaviors of Gulo −/− mice. Antioxid Redox Signal. 2015;23:1270–83.

    Article  CAS  Google Scholar 

  • Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH. Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res. 2003;73:156–65.

    Article  CAS  Google Scholar 

  • MacGregor DG, Higgins MJ, Jones PA, Maxwell WL, Watson MW, Graham DI, Stone TW. Ascorbate attenuates the systemic kainite-induced neurotoxicity in the rat hippocampus. Brain Res. 1996;727:133–44.

    Article  CAS  Google Scholar 

  • Mack WJ, Mocco J, Ducruet AF, Laufer I, King RG, Zhang Y, Guo W, Pinsky DJ, Connolly ES Jr. A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is correlated with increased cerebral ascorbic acid and inhibited lipid peroxidation after murine reperfused stroke. Neurosurgery. 2006;59:383–8.

    Article  Google Scholar 

  • Majewska MD, Bell JA, London ED. Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res. 1990;537:328–32.

    Article  CAS  Google Scholar 

  • Majewska MD, Bell JA. Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport. 1990;1:194–6.

    Article  CAS  Google Scholar 

  • May JM, Asard H. Ascorbate recycling. In: Asard H, May JM, Smirnoff N, editors. Vitamin C, functions and biochemistry in animals and plants. London: Bios Scientific Publishers; 2004. p. 139–58.

    Google Scholar 

  • May JM, Jayagopal A, Qu ZC, Parker WH. Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes. Biochem Biophys Res Commun. 2014;452(1):112–7.

    Article  CAS  Google Scholar 

  • May JM, Li L, Hayslett K, Qu ZC. Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem Res. 2006;31:785–94.

    Article  CAS  Google Scholar 

  • May JM. Vitamin C transport and its role in the central nervous system. Subcell Biochem. 2012;56:85–103.

    Article  CAS  Google Scholar 

  • Montine T, Neely M, Quinn J, Beal M, Markesbery W, Roberts L, Morrow J. Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med. 2002;33:620–6.

    Article  CAS  Google Scholar 

  • Morris MC, Beckett LA, Scherr PA, Hebert LE, Bennett DA, Field TS, Evans DA. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord. 1998;12:121–6.

    Article  CAS  Google Scholar 

  • Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YL, Oh SH, Kim JG, Hwang DH, Shin DH, Lee WJ. Immunohistochemical study of the distribution of sodium dependent vitamin C transporters in adult rat brain. J Neurosci Res. 2006;83:919–28.

    Article  CAS  Google Scholar 

  • Nagayama H, Mamamoto M, Ueda M, Nito C, Yamaguchi H, Katayama Y. The effects of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin Neuropharmacol. 2004;27:270–3.

    Article  CAS  Google Scholar 

  • Pratico D. Alzheimer’s disease and oxygen radicals: new insights. Biochem Pharmacol. 2002;63:563–7.

    Article  CAS  Google Scholar 

  • Qiu L, Li L, Weeber EJ, May JM. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res. 2006.

    Google Scholar 

  • Ranzan A, Theodore D, Haran RP, Chandy MJ. Ascorbic acid and focal cerebral ischemia in a primate model. Acta Neurochir. 1993;123:87–91.

    Article  Google Scholar 

  • Rebec GV, Pierce RC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol. 1994;43:537–65.

    Article  CAS  Google Scholar 

  • Rebec GV, Barto SJ, Marseilles AM, Collins K. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. Neuroreport. 2003;14:1263–5.

    Article  CAS  Google Scholar 

  • Rebec GV, Barton SJ, Ennis MD. Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene. J Neurosci. 2002;22:RC202.

    Article  Google Scholar 

  • Rice ME, Lee EJ, Choy Y. High levels of ascorbic acid, not glutathione, in the CNS of anoxia-tolerant reptiles contrasted with levels in anorexia-intolerant species. J Neurochem. 1995;64:1790–9.

    Article  CAS  Google Scholar 

  • Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience. 1998;82:1213–23.

    Article  CAS  Google Scholar 

  • Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000;23:209–16.

    Article  CAS  Google Scholar 

  • Riviere S, Birlouez-Aragon I, Nourhashemi F, Bellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int J Geriatr Psychiatry. 1998;13:749–54.

    Article  CAS  Google Scholar 

  • Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velazquez M, Martinez-Barboza G, Acosta-Martinez JP, Ortiz GG. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid beta peptide in rat brain: a comparative, in vivo study versus vitamin C and Eur. J Pineal Res. 2003;35:80–4.

    Article  CAS  Google Scholar 

  • Schippling S, Kontush A, Arit S, Buhmann C, Sturenburg HJ, Mann U, Muller-Thomsen T, Beisiegel U. Increased lipoprotein oxidation in Alzheimer’s disease. Free Radic Biol Med. 2000;28:351–60.

    Article  CAS  Google Scholar 

  • Spector R. Vitamin homeostasis in the central nervous system. N Engl J Med. 1977;296:1393–8.

    Article  CAS  Google Scholar 

  • Wagner GC, Carelli RM, Jarvis MF. Ascorbic acid reduces the dopamine depletion induced by methamphetamine and the 1-methyl-4-phenyl pyridinium ion. Neuropharmacology. 1986;25:559–61.

    Article  CAS  Google Scholar 

  • Wilson JX, Peters CE, Sitar SM, Daoust P, Gelb AW. Glutamate stimulates ascorbate transport by astrocytes. Brain Res. 2000;858:61–6.

    Article  CAS  Google Scholar 

  • Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol. 1997;75:1149–63.

    Article  CAS  Google Scholar 

  • Yusa T. Increased extracellular ascorbate release reflects glutamate re-uptake during the early stage of reperfusion after forebrain ischemia in rats. Brain Res. 2001;897:104–13.

    Article  CAS  Google Scholar 

  • Zhang SM, Hernan MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes of vitamin E and C, vitamin supplements, and PD risk. Neurology. 2002;59:1161–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, W.J. (2019). Central Nervous System (CNS) . In: Vitamin C in Human Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1713-5_6

Download citation

Publish with us

Policies and ethics