Skip to main content

Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation

  • Chapter
Book cover Explanation in Biology

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 11))

Abstract

Evolutionary developmental biology (evo-devo) is considered a ‘mechanistic science,’ in that it causally explains morphological evolution in terms of changes in developmental mechanisms. Evo-devo is also an interdisciplinary and integrative approach, as its explanations use contributions from many fields and pertain to different levels of organismal organization. Philosophical accounts of mechanistic explanation are currently highly prominent, and have been particularly able to capture the integrative nature of multifield and multilevel explanations. However, I argue that evo-devo demonstrates the need for a broadened philosophical conception of mechanisms and mechanistic explanation.

Mechanistic explanation (in terms of the qualitative interactions of the structural parts of a whole) has been developed as an alternative to the traditional idea of explanation as derivation from laws or quantitative principles. Against the picture promoted by Carl Craver, that mathematical models describe but usually do not explain, my discussion of cases from the strand of evo-devo which is concerned with developmental processes points to qualitative phenomena where quantitative mathematical models are an indispensable part of the explanation. While philosophical accounts have focused on the actual organization and operation of mechanisms, properties of developmental mechanisms that are about how a mechanism reacts to modifications are of major evolutionary significance, including robustness, phenotypic plasticity, and modularity. A philosophical conception of mechanisms is needed that takes into account quantitative changes, transient entities and the generation of novel types of entities, feedback loops and complex interaction networks, emergent properties, and, in particular, functional-dynamical aspects of mechanisms, including functional (as opposed to structural) organization and distributed, system-wide phenomena. I conclude with general remarks on philosophical accounts of explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complementary epistemological way of articulating integration is in terms of problem agendas that structure how contributions from different fields are to be coordinated (Brigandt 2010; Brigandt and Love 2010, 2012a; Love 2008a, b).

  2. 2.

    “… mechanistic models of how developmental systems produce phenotypes and how changes within these systems contribute to corresponding changes in phenotypes. This differs from the Modern Synthesis view that evolutionary processes are driven largely by (random) genetic changes, on the one hand, and by functional interactions of organisms with their environment, on the other hand, … What the molecular analysis of developmental processes and regulatory gene networks provides is a mechanistic understanding of both the development and evolution of phenotypic characters.” (Laubichler 2010, pp. 202 and 208, my emphasis)

  3. 3.

    Likewise, in his argument that the Hodgkin and Huxley equations are merely phenomenological, Craver (2006) acknowledges that the equations “allow neuroscientists to predict how current will change under various experimental interventions” (p. 363, my emphasis)—which given Woodward’s interventionist account of causation entails that the equations capture some causal factors and thus explain. Craver still rules them to be non-explanatory, apparently on the grounds that they do not provide an account of how the quantitative relation is brought about by lower-level constituents.

  4. 4.

    Note that the model abstracts away from entities mediating the interaction of the activator and inhibitor, e.g., DAN (Fig. 7.1a, b). This omitting of molecular-mechanistic detail is licit assuming that it does not alter the functional interaction and dynamics of the activator and inhibitor. If so, by my criterion ER such (for the target phenomenon) explanatorily irrelevant detail ought to be excluded from the explanation. This shows that a mechanistic account of how an effect is produced (citing all intermediate steps and structural interactions) and an explanation of why it occurs are consistent, but not identical.

  5. 5.

    Figure 7.2 schematically depicts the four oscillating genes Hes1, Hes7, Hes5, and Hey2 (all of which engage in negative feedback) together.

  6. 6.

    Explaining why the oscillation has a period of 120 min (in mice) would definitely necessitate a quantitative account (see also Baetu 2015). In the related context of circadian rhythms (genetic oscillations with a period of about a day), for a philosophical account indicating the relevance of mathematical modeling see Bechtel and Abrahamsen (2010, 2011) and Bechtel (2013).

  7. 7.

    At the end of Sect. 3, I pointed out that not every explanation requires the reductive decomposition of a mechanism’s components. According to my criterion ER, if the component is explanatorily relevant—if changing it would lead to a change in the surrounding mechanism’s features to be explained—but the component’s lower-level constituents are not relevant to the particular explanandum, then the explanation should cite the component but not its constituents. The component exhibiting robustness is a clear way in which this can be the case, as a change in the component’s constituents does not make a causal difference to the component’s robust properties (which are relevant to the explanation).

  8. 8.

    Baetu (2015) points out that the functioning of a mechanism can be due not so much to stable entities, but to a stable concentration (of a type of entity), where individual entities are very short-lived and constantly replaced.

  9. 9.

    There is disagreement on whether philosophical accounts of mechanisms can capture natural selection (Barros 2008; Skipper and Millstein 2005). My view is that explanations in terms of natural selection (in particular when using mathematical models) abstract away from many concrete properties and activities of individual organism. But abstraction from mechanistic detail happens even in mathematical models in molecular and developmental biology (Sect. 3; Bechtel 2015; Brigandt 2013c; Levy 2014; Levy and Bechtel 2013), so that the broad conception of mechanistic explanation advocated here is more likely to accommodate natural selection. One difficulty is that natural selection is about fitness differences among phenotypes. Even if each of two phenotypes is part of a mechanism (by each phenotype being possessed by concrete organisms), what matters is how the phenotypes differ and the phenotypes’ differential behavior across time, which is a complex and unusual aspect of a ‘mechanism.’

  10. 10.

    On related grounds, Baetu (2015) argues that molecular mechanisms are not neatly individuated objects.

  11. 11.

    Baetu (2015) discusses how a mathematical model can reveal a previous molecular-mechanistic account to be explanatorily incomplete. This can prompt and guide further experimental discovery, so a mathematical model can be involved in both discovery and explanation.

References

  • Abud, H. E. (2004). Shaping developing tissues by apoptosis. Cell Death and Differentiation, 11, 797–799.

    Google Scholar 

  • Albert, R., & Othmer, H. G. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223, 1–18.

    Google Scholar 

  • Baetu, T. (2015). From mechanisms to mathematical models and back to mechanisms: Quantitative mechanistic explanations. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 345–363). Dordrecht: Springer.

    Google Scholar 

  • Baggs, J. E., Price, T. S., DiTacchio, L., Panda, S., FitzGerald, G. A., & Hogenesch, J. B. (2009). Network features of the mammalian circadian clock. PLoS Biology, 7, e1000052.

    Google Scholar 

  • Baker, A. (2015). Mathematical explanation in biology. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 229–247). . Dordrecht: Springer.

    Google Scholar 

  • Baker, R. E., & Schnell, S. (2009). How can mathematics help us explore vertebrate segmentation? HFSP Journal, 3, 1–5.

    Google Scholar 

  • Baker, R. E., Schnell, S., & Maini, P. K. (2008). Mathematical models for somite formation. In S. Schnell, P. K. Maini, S. A. Newman, & T. J. Newman (Eds.), Multiscale modeling of developmental systems (pp. 183–203). New York: Academic.

    Google Scholar 

  • Barabási, A.-L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–113.

    Google Scholar 

  • Barabási, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12, 56–68.

    Google Scholar 

  • Barros, D. B. (2008). Natural selection as a mechanism. Philosophy of Science, 75, 306–322.

    Google Scholar 

  • Bechtel, W. (2006). Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bechtel, W. (2010). The downs and ups of mechanistic research: Circadian rhythm research as an exemplar. Erkenntnis, 73, 313–328.

    Google Scholar 

  • Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.

    Google Scholar 

  • Bechtel, W. (2013). From molecules to behavior and the clinic: Integration in chronobiology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 493–502.

    Google Scholar 

  • Bechtel, W. (2015). Generalizing mechanistic explanations using graph-theoretic representations. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 199–225). Dordrecht: Springer.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 421–441.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41, 321–333.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In C. Hooker (Ed.), Philosophy of complex systems (pp. 257–285). Amsterdam: Elsevier.

    Google Scholar 

  • Bedau, M. A. (2003). Downward causation and the autonomy of weak emergence. Principia, 3, 5–50.

    Google Scholar 

  • Behe, M. J. (1996). Darwin’s black box: The biochemical challenge to evolution. New York: Free Press.

    Google Scholar 

  • Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.

    Google Scholar 

  • Bogen, J. (2005). Regularities and causality; generalizations and causal explanations. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 397–420.

    Google Scholar 

  • Bolker, J. A. (2000). Modularity in development and why it matters to evo-devo. American Zoologist, 40, 770–776.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F., Richardson, R., Stephan, A., & Westerhoff, H. (2005). Emergence and its place in nature: A case study of biochemical networks. Synthese, 145, 131–164.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., & Westerhoff, H. V. (Eds.). (2007a). Systems biology: Philosophical foundations. Amsterdam: Elsevier.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., & Westerhoff, H. V. (2007b). Towards philosophical foundations of systems biology: Introduction. In F. C. Boogerd, F. J. Bruggeman, J.-H. S. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 3–19). Amsterdam: Elsevier.

    Google Scholar 

  • Braendle, C., & Félix, M.-A. (2008). Plasticity and errors of a robust developmental system in different environments. Developmental Cell, 15, 714–724.

    Google Scholar 

  • Braillard, P.-A. (2015). Prospect and limits of explaining biological systems in engineering terms. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 319–344). Dordrecht: Springer.

    Google Scholar 

  • Breidenmoser, T., & Wolkenhauer O. (2015). Explanation and organizing principles in systems biology. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 249–264). Dordrecht: Springer.

    Google Scholar 

  • Breuker, C. J., Debat, V., & Klingenberg, C. P. (2006). Functional evo-devo. Trends in Ecology & Evolution, 21, 488–492.

    Google Scholar 

  • Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.

    Google Scholar 

  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73, 295–311.

    Google Scholar 

  • Brigandt, I. (2012a). The dynamics of scientific concepts: The relevance of epistemic aims and values. In U. Feest & F. Steinle (Eds.), Scientific concepts and investigative practice(pp. 75–103). Berlin: de Gruyter.

    Google Scholar 

  • Brigandt, I. (Ed.). (2012b). Perspectives on evolutionary novelty and evo-devo. Special issue of the Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318(6), 417–517.

    Google Scholar 

  • Brigandt, I. (2013a). Explanation in biology. Reduction, pluralism, and explanatory aims. Science & Education, 22, 69–91.

    Google Scholar 

  • Brigandt, I. (2013b). Intelligent design and the nature of science: Philosophical and pedagogical points. In K. Kampourakis (Ed.), Philosophical issues in biology education (pp. 205–238). Dordrecht: Springer.

    Google Scholar 

  • Brigandt, I. (2013c). Systems biology and the integration of mechanistic explanation and mathematical explanation. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 477–492.

    Google Scholar 

  • Brigandt, I. (2015). From developmental constraint to evolvability: How concepts figure in explanation and disciplinary identity. In A. C. Love (Ed.), Conceptual change in biology: Scientific and philosophical perspectives on evolution and development (pp. 305–325). Dordrecht: Springer.

    Google Scholar 

  • Brigandt, I., & Griffiths, P. E. (2007). The importance of homology for biology and philosophy. Biology and Philosophy, 22, 633–641.

    Google Scholar 

  • Brigandt, I., & Love, A. C. (2010). Evolutionary novelty and the evo-devo synthesis: Field notes. Evolutionary Biology, 37, 93–99.

    Google Scholar 

  • Brigandt, I., & Love, A. C. (2012a). Conceptualizing evolutionary novelty: Moving beyond definitional debates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 417–427.

    Google Scholar 

  • Brigandt, I., & Love, A.C. (2012b). Reductionism in biology. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/reduction-biology

  • Callebaut, W., & Rasskin-Gutman, D. (Eds.). (2005). Modularity: Understanding the development and evolution of natural complex systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cañestro, C., Yokoi, H., & Postlethwait, J. H. (2007). Evolutionary developmental biology and genomics. Nature Reviews Genetics, 8, 932–942.

    Google Scholar 

  • Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.

    Google Scholar 

  • Craver, C. F. (2005). Beyond reduction: Mechanisms, multifield integration and the unity of neuroscience. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 373–395.

    Google Scholar 

  • Craver, C. F. (2006). When mechanistic models explain. Synthese, 153, 355–376.

    Google Scholar 

  • Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Google Scholar 

  • Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75, 1022–1033.

    Google Scholar 

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.

    Google Scholar 

  • Darden, L. (2005). Relations among fields: Mendelian, cytological and molecular mechanisms. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 349–371.

    Google Scholar 

  • Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davidson, E. H. (2006). The regulatory genome: Gene regulatory networks in development and evolution. London: Academic.

    Google Scholar 

  • Davidson, E. H. (2010). Emerging properties of animal gene regulatory networks. Nature, 468, 911–920.

    Google Scholar 

  • Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.

    Google Scholar 

  • Davis, G. K. (2012). Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 448–459.

    Google Scholar 

  • Dean, E. J., Davis, J. C., Davis, R. W., & Petrov, D. A. (2008). Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genetics, 4, e1000113.

    Google Scholar 

  • Delattre, M., & Félix, M.-A. (2009). The evolutionary context of robust and redundant cell biological mechanisms. BioEssays, 31, 537–545.

    Google Scholar 

  • Dequéant, M.-L., & Pourquié, O. (2008). Segmental patterning of the vertebrate embryonic axis. Nature Reviews Genetics, 9, 370–382.

    Google Scholar 

  • Dequéant, M.-L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., & Pourquié, O. (2006). A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314, 1595–1598.

    Google Scholar 

  • Economou, A. D., Ohazama, A., Porntaveetus, T., Sharpe, P. T., Kondo, S., Basson, M. A., Gritli-Linde, A., Cobourne, M. T., & Green, J. B. A. (2012). Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nature Genetics, 44, 348–351.

    Google Scholar 

  • Edwards, J. S., & Palsson, B. O. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. Journal of Biological Chemistry, 274, 17410–17416.

    Google Scholar 

  • Edwards, J. S., & Palsson, B. O. (2000a). The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proceedings of the National Academy of Sciences of the United States of America, 97, 5528–5533.

    Google Scholar 

  • Edwards, J. S., & Palsson, B. O. (2000b). Robustness analysis of the Escherichia coli metabolic network. Biotechnology Progress, 16, 927–939.

    Google Scholar 

  • Eissing, T., Conzelmann, H., Gilles, E. D., Allgöwer, F., Bullinger, E., & Scheurich, P. (2004). Bistability analyses of a caspase activation model for receptor-induced apoptosis. Journal of Biological Chemistry, 279, 36892–36897.

    Google Scholar 

  • Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148.

    Google Scholar 

  • Fagan, M. B. (2012a). Materia mathematica: Models in stem cell biology. Journal of Experimental & Theoretical Artificial Intelligence, 24, 315–327.

    Google Scholar 

  • Fagan, M. B. (2012b). Waddington redux: Models and explanation in stem cell and systems biology. Biology and Philosophy, 27, 179–213.

    Google Scholar 

  • Ferrell, J. E., & Xiong, W. (2001). Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. Chaos, 11, 227–236.

    Google Scholar 

  • Fisher, J., Piterman, N., Hajnal, A., & Henzinger, T. A. (2007). Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Computational Biology, 3, e92.

    Google Scholar 

  • Forgacs, G., & Newman, S. A. (2005). Biological physics of the developing embryo. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fraser, I. D. C., & Germain, R. N. (2009). Navigating the network: Signaling cross-talk in hematopoietic cells. Nature Immunology, 10, 327–331.

    Google Scholar 

  • Gerhart, J. C., & Kirschner, M. W. (2003). Evolvability. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 133–137). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gerhart, J. C., & Kirschner, M. W. (2007). The theory of facilitated variation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8582–8589.

    Google Scholar 

  • Gilbert, S. F. (2001). Ecological developmental biology: Developmental biology meets the real world. Developmental Biology, 233, 1–12.

    Google Scholar 

  • Glass, G. L., & Bolker, J. A. (2003). Modularity. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 260–267). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Goldbeter, A., & Pourquié, O. (2008). Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. Journal of Theoretical Biology, 252, 574–585.

    Google Scholar 

  • Goldbeter, A., Gonze, D., & Pourquié, O. (2007). Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Developmental Dynamics, 236, 1495–1508.

    Google Scholar 

  • Gonzalez, P. N., Oyhenart, E. E., & Hallgrímsson, B. (2011). Effects of environmental perturbations during postnatal development on the phenotypic integration of the skull. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 316B, 547–561.

    Google Scholar 

  • Green, S., Fagan, M., & Jaeger, J. (2015). Explanatory integration challenges in evolutionary systems biology. Biological Theory, 10, 18–35.

    Google Scholar 

  • Greenbury, S. F., Johnston, I. G., Smith, M. A., Doye, J. P. K., & Louis, A. A. (2010). The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks. Journal of Theoretical Biology, 267, 48–61.

    Google Scholar 

  • Gross, F. (2015). The relevance of irrelevance: Explanation in systems biology. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 175–198). Dordrecht: Springer.

    Google Scholar 

  • Hall, B. K. (Ed.). (2006). Fins into limbs: Evolution, development and transformation. Chicago: University of Chicago Press.

    Google Scholar 

  • Hallgrímsson, B., & Hall, B. K. (Eds.). (2011). Epigenetics: Linking genotype and phenotype in development and evolution. Berkeley: University of California Press.

    Google Scholar 

  • Hallgrímsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., & Jirik, F. R. (2007). Epigenetic interactions and the structure of phenotypic variation in the cranium. Evolution & Development, 9, 76–91.

    Google Scholar 

  • Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135–175.

    Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrímsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Google Scholar 

  • Hentschel, H. G. E., Glimm, T., Glazier, J. A., & Newman, S. A. (2004). Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 1713–1722.

    Google Scholar 

  • Herrgen, L., Ares, S., Morelli, L. G., Schröter, C., Jülicher, F., & Oates, A. C. (2010). Intercellular coupling regulates the period of the segmentation clock. Current Biology, 20, 1244–1253.

    Google Scholar 

  • Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177, 213–245.

    Google Scholar 

  • Huneman, P. (2012). Determinism, predictability and open-ended evolution: Lessons from computational emergence. Synthese, 185, 195–214.

    Google Scholar 

  • Ihekwaba, A. E. C., Broomhead, D. S., Grimley, R., Benson, N., White, M. R. H., & Kell, D. B. (2005). Synergistic control of oscillations in the nf-κb signalling pathway. IEE Proceedings Systems Biology, 152, 153–160.

    Google Scholar 

  • Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. J., & Weissman, J. S. (2007). Backup without redundancy: Genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology, 3, 86.

    Google Scholar 

  • Ingolia, N. T. (2004). Topology and robustness in the Drosophila segment polarity network. PLoS Biology, 2, e123.

    Google Scholar 

  • Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265–292). Dordrecht: Springer.

    Google Scholar 

  • Jamniczky, H. A., & Hallgrímsson, B. (2011). Modularity in the skull and cranial vasculature of laboratory mice: Implications for the evolution of complex phenotypes. Evolution & Development, 13, 28–37.

    Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabási, A. L. (2000). The large-scale organization of metabolic networks. Nature, 407, 651–654.

    Google Scholar 

  • Jørgensen, C., & Linding, R. (2010). Simplistic pathways or complex networks? Current Opinion in Genetics & Development, 20, 15–22.

    Google Scholar 

  • Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37, 295–299.

    Google Scholar 

  • Kaplan, D. M., & Craver, C. F. (2011). The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science, 78, 601–627.

    Google Scholar 

  • Kirschner, M. W., & Gerhart, J. C. (1998). Evolvability. Proceedings of the National Academy of Sciences of the United States of America, 95, 8420–8427.

    Google Scholar 

  • Kirschner, M. W., & Gerhart, J. C. (2005). The plausibility of life: Resolving Darwin’s dilemma. New Haven: Yale University Press.

    Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 826–837.

    Google Scholar 

  • Laubichler, M. D. (2009). Form and function in Evo Devo: Historical and conceptual reflections. In M. D. Laubichler & J. Maienschein (Eds.), Form and function in developmental evolution (pp. 10–46). Cambridge: Cambridge University Press.

    Google Scholar 

  • Laubichler, M. D. (2010). Evolutionary developmental biology offers a significant challenge to the neo-Darwinian paradigm. In F. Ayala & R. Arp (Eds.), Contemporary debates in the philosophy of biology (pp. 199–212). Malden: Wiley-Blackwell.

    Google Scholar 

  • Layek, R. K., Datta, A., & Dougherty, E. R. (2011). From biological pathways to regulatory networks. Molecular BioSystems, 7, 843–851.

    Google Scholar 

  • Levy, A. (2014). What was Hodgkin and Huxley’s achievement? British Journal for the Philosophy of Science, 65, 469–492.

    Google Scholar 

  • Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80, 241–261.

    Google Scholar 

  • Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S., & Carthew, R. W. (2009). A microRNA imparts robustness against environmental fluctuation during development. Cell, 137, 273–282.

    Google Scholar 

  • Linksvayer, T. A., Fewell, J. H., Gadau, J., & Laubichler, M. D. (2012). Developmental evolution in social insects: Regulatory networks from genes to societies. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 159–169.

    Google Scholar 

  • Love, A. C. (2008a). Explaining evolutionary innovations and novelties: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75, 874–886.

    Google Scholar 

  • Love, A. C. (2008b). From philosophy to science (to natural philosophy): Evolutionary developmental perspectives. The Quarterly Review of Biology, 83, 65–76.

    Google Scholar 

  • Love, A. C. (2013). Interdisciplinary lessons for the teaching of biology from the practice of evo-devo. Science & Education, 22, 255–278.

    Google Scholar 

  • Love, A. C. (Ed.). (2015). Conceptual change in biology: Scientific and philosophical perspectives on evolution and development. Dordrecht: Springer.

    Google Scholar 

  • Love, A. C., & Raff, R. A. (2003). Knowing your ancestors: Themes in the history of evo-devo. Evolution & Development, 5, 327–330.

    Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.

    Google Scholar 

  • Manu, Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A.-R., Radulescu, O., et al. (2009a). Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors. PLoS Computational Biology, 5, e1000303.

    Google Scholar 

  • Manu, Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A.-R., Radulescu, O., et al. (2009b). Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biology, 7, e1000049.

    Google Scholar 

  • Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., & Kageyama, R. (2006). Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 1313–1318.

    Google Scholar 

  • Masel, J., & Siegal, M. L. (2009). Robustness: Mechanisms and consequences. Trends in Genetics, 25, 395–403.

    Google Scholar 

  • Mazzitello, K. I., Arizmendi, C. M., & Hentschel, H. G. E. (2008). Converting genetic network oscillations into somite spatial patterns. Physical Review E, 78, 021906.

    Google Scholar 

  • Meinhardt, H. (2003). Complex pattern formation by a self-destabilization of established patterns: Chemotactic orientation and phyllotaxis as examples. Comptes Rendus Biologies, 326, 223–237.

    Google Scholar 

  • Meinhardt, H. (2009). The algorithmic beauty of sea shells (4th ed.). Berlin: Springer.

    Google Scholar 

  • Meinhardt, H. (2012). Modeling pattern formation in hydra: A route to understanding essential steps in development. International Journal of Developmental Biology, 56, 447–462.

    Google Scholar 

  • Mekios, C. (2015). Explanation in systems biology: Is it all about mechanisms? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 47–72). Dordrecht: Springer.

    Google Scholar 

  • Merlin, F. (2015). Developmental noise: Explaining the specific heterogeneity of individual organisms. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 91–110). Dordrecht: Springer.

    Google Scholar 

  • Milloz, J., Duveau, F., Nuez, I., & Félix, M.-A. (2008). Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes & Development, 22, 3064–3075.

    Google Scholar 

  • Mitchell, S. D. (2009). Unsimple truths: Science, complexity, and policy. Chicago: University of Chicago Press.

    Google Scholar 

  • Mitchell, S. D. (2012). Emergence: Logical, functional and dynamical. Synthese, 185, 171–186.

    Google Scholar 

  • Morelli, L. G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., & Oates, A. C. (2009). Delayed coupling theory of vertebrate segmentation. HFSP Journal, 3, 55–66.

    Google Scholar 

  • Morelli, L. G., Uriu, K., Ares, S., & Oates, A. C. (2012). Computational approaches to developmental patterning. Science, 336, 187–191.

    Google Scholar 

  • Müller, G. B. (2003). Embryonic motility: Environmental influences and evolutionary innovation. Evolution & Development, 5, 56–60.

    Google Scholar 

  • Müller, G. B., & Newman, S. A. (Eds.). (2003). Origination of organismal form: Beyond the gene in developmental and evolutionary biology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Müller, G. B., & Newman, S. A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B, 487–503.

    Google Scholar 

  • Müller, G. B., & Wagner, G. P. (2003). Innovation. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 218–227). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Murray, J. D. (2003). Mathematical biology II: Spatial models and biomedical applications. Berlin: Springer.

    Google Scholar 

  • Nakamasu, A., Takahashi, G., Kanbe, A., & Kondo, S. (2009). Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America, 106, 8429–8434.

    Google Scholar 

  • Newman, S. A., & Müller, G. B. (2000). Epigenetic mechanisms of character origination. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 288, 304–317.

    Google Scholar 

  • Newman, S. A., & Müller, G. B. (2005). Origination and innovation in the vertebrate limb skeleton: An epigenetic perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B, 593–609.

    Google Scholar 

  • Newman, S. A., Christley, S., Glimm, T., Hentschel, H. G. E., Kazmierczak, B., Zhang, Y.-T., Zhu, J., & Alber, M. S. (2008). Multiscale models for vertebrate limb development. In S. Schnell, P. K. Maini, S. A. Newman, & T. J. Newman (Eds.), Multiscale modeling of developmental systems (pp. 311–340). New York: Academic.

    Google Scholar 

  • Noble, D. (2002). Modeling the heart—from genes to cells to the whole organ. Science, 295, 1678–1682.

    Google Scholar 

  • O’Malley, M. A., Brigandt, I., Love, A. C., Crawford, J. W., Gilbert, J. A., Knight, R., Mitchell, S. D., & Rohwer, F. (2014). Multilevel research strategies and biological systems. Philosophy of Science, 81, 811–828.

    Google Scholar 

  • Oates, A. C., Morelli, L. G., & Ares, S. (2012). Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development, 139, 625–639.

    Google Scholar 

  • Paley, W. (1802). Natural theology, or evidences of the existence and attributes of the deity, collected from the appearances of nature. London: R. Faulder.

    Google Scholar 

  • Palmer, A. R. (2004). Symmetry breaking and the evolution of development. Science, 306, 828–833.

    Google Scholar 

  • Palmer, A. R. (2012). Developmental plasticity and the origin of novel forms: Unveiling of cryptic genetic variation via “use and disuse”. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 466–479.

    Google Scholar 

  • Plikus, M. V., Baker, R. E., Chen, C.-C., Fare, C., de la Cruz, D., Andl, T., Maini, P. K., Millar, S. E., Widelitz, R., & Chuong, C.-M. (2011). Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science, 332, 586–589.

    Google Scholar 

  • Prud’homme, B., Minervino, C., Hocine, M., Cande, J. D., Aouane, A., Dufour, H. D., Kassner, V. A., & Gompel, N. (2011). Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature, 473, 83–86.

    Google Scholar 

  • Prum, R. O. (2005). Evolution of the morphological innovations of feathers. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B, 570–579.

    Google Scholar 

  • Putnam, H. (1975). Philosophy and our mental life. In H. Putnam (Ed.), Mind, language and reality (Philosophical papers, Vol. 2, pp. 291–303). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rice, S. H. (2008). Theoretical approaches to the evolution of development and genetic architecture. Annals of the New York Academy of Sciences, 1133, 67–86.

    Google Scholar 

  • Rice, S. H. (2012). The place of development in mathematical evolutionary theory. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 480–488.

    Google Scholar 

  • Riedel-Kruse, I. H., Müller, C., & Oates, A. C. (2007). Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science, 317, 1911–1915.

    Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences of the United States of America, 99, 8116–8120.

    Google Scholar 

  • Salazar-Ciudad, I., & Jernvall, J. (2010). A computational model of teeth and the developmental origins of morphological variation. Nature, 464, 583–586.

    Google Scholar 

  • Santillán, M., & Mackey, M. C. (2008). A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis. PLoS ONE, 3, e1561.

    Google Scholar 

  • Schlosser, G., & Wagner, G. P. (Eds.). (2004). Modularity in development and evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Schnell, S., Maini, P. K., Newman, S. A., & Newman, T. J. (Eds.). (2008). Multiscale modeling of developmental systems. New York: Academic.

    Google Scholar 

  • Shigetani, Y., Sugahara, F., Kawakami, Y., Murakami, Y., Hirano, S., & Kuratani, S. (2002). Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science, 296, 1316–1319.

    Google Scholar 

  • Siegal, M., Promislow, D., & Bergman, A. (2007). Functional and evolutionary inference in gene networks: Does topology matter? Genetica, 129, 83–103.

    Google Scholar 

  • Skipper, R. A., Jr., & Millstein, R. L. (2005). Thinking about evolutionary mechanisms: Natural selection. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 327–347.

    Google Scholar 

  • Smart, A. G., Amaral, L. A. N., & Ottino, J. M. (2008). Cascading failure and robustness in metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 13223–13228.

    Google Scholar 

  • Strevens, M. (2008). Depth: An account of scientific explanation. Harvard: Harvard University Press.

    Google Scholar 

  • Théry, F. (2015). Explaining in contemporary molecular biology: Beyond mechanisms. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 113–133). Dordrecht: Springer.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 237, 37–72.

    Google Scholar 

  • Umulis, D., O’Connor, M. B., & Othmer, H. G. (2008). Robustness of embryonic spatial patterning in Drosophila melanogaster. In S. Schnell, P. K. Maini, S. A. Newman, & T. J. Newman (Eds.), Multiscale modeling of developmental systems (pp. 65–111). New York: Academic.

    Google Scholar 

  • Uriu, K., Morishita, Y., & Iwasa, Y. (2010). Random cell movement promotes synchronization of the segmentation clock. Proceedings of the National Academy of Sciences of the United States of America, 107, 4979–4984.

    Google Scholar 

  • von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements for a conceptual framework for EvoDevo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 285, 307–325.

    Google Scholar 

  • von Dassow, G., & Odell, G. M. (2002). Design and constraints of the Drosophila segment polarity module: Robust spatial patterning emerges from intertwined cell state switches. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 294, 179–215.

    Google Scholar 

  • von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406, 188–192.

    Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Google Scholar 

  • Wagner, G. P. (2000). What is the promise of developmental evolution? Part I: Why is developmental biology necessary to explain evolutionary innovations? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 288, 95–98.

    Google Scholar 

  • Wagner, A. (2005a). Distributed robustness versus redundancy as causes of mutational robustness. BioEssays, 27, 176–188.

    Google Scholar 

  • Wagner, A. (2005b). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wagner, G. P. (2005c). The developmental evolution of avian digit homology: An update. Theory in Biosciences, 124, 165–183.

    Google Scholar 

  • Wagner, G. P. (2007). How wide and how deep is the divide between population genetics and developmental evolution? Biology and Philosophy, 22, 145–153.

    Google Scholar 

  • Wagner, A. (2008). Gene duplications, robustness and evolutionary innovations. BioEssays, 30, 367–373.

    Google Scholar 

  • Wagner, G. P., & Misof, B. Y. (1993). How can a character be developmentally constrained despite variation in developmental pathways? Journal of Evolutionary Biology, 6, 449–455.

    Google Scholar 

  • Wagner, G. P., Chiu, C.-H., & Laubichler, M. D. (2000). Developmental evolution as a mechanistic science: The inference from developmental mechanisms to evolutionary processes. American Zoologist, 40, 819–831.

    Google Scholar 

  • Wang, Y., Zhang, X.-S., & Xia, Y. (2009). Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Research, 37, 5943–5958.

    Google Scholar 

  • Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weber, M. (2008). Causes without mechanisms: Experimental regularities, physical laws, and neuroscientific explanation. Philosophy of Science, 75, 995–1007.

    Google Scholar 

  • Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York: Oxford University Press.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • West-Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B, 610–618.

    Google Scholar 

  • Westerhoff, H. V., & Kell, D. B. (2007). The methodologies of systems biology. In F. C. Boogerd, F. J. Bruggeman, J.-H. S. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 23–70). Amsterdam: Elsevier.

    Google Scholar 

  • Whitman, D. W., & Agrawal, A. A. (2009). What is phenotypic plasticity and why is it important? In D. W. Whitman & T. N. Ananthakrishnan (Eds.), Phenotypic plasticity of insects: Mechanisms and consequences (pp. 1–63). Enfield: Science Publishers.

    Google Scholar 

  • Wing, S. S., Lecker, S. H., & Jagoe, R. T. (2011). Proteolysis in illness-associated skeletal muscle atrophy: From pathways to networks. Critical Reviews in Clinical Laboratory Science, 48, 49–70.

    Google Scholar 

  • Winther, R. G. (2006). Parts and theories in compositional biology. Biology and Philosophy, 21, 471–499.

    Google Scholar 

  • Winther, R. G. (2011). Part-whole science. Synthese, 178, 397–427.

    Google Scholar 

  • Woodward, J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69, S366–S377.

    Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.

    Google Scholar 

  • Young, R. L., & Wagner, G. P. (2011). Why ontogenetic homology criteria can be misleading: Lessons from digit identity transformations. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 316B, 165–170.

    Google Scholar 

  • Zhu, J., Zhang, Y.-T., Alber, M. S., & Newman, S. A. (2010). Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE, 5, e10892.

    Google Scholar 

Download references

Acknowledgments

I am indebted to Pierre-Alain Braillard, Christophe Malaterre, and two anonymous referees for detailed comments on an earlier version of this paper. I thank Emma Kennedy for proofreading the manuscript and Arnon Levy, Bill Bechtel, Carl Craver, and Maureen O’Malley for discussions on mechanistic explanation and mathematical models. Figure 7.1 was reprinted from Salazar-Ciudad and Jernvall (2002) with the permission of the copyright holder, the National Academy of Sciences, USA. Figure 7.2 was reprinted from Dequéant and Pourquié (2008) by permission from Macmillan Publishers Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Brigandt .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brigandt, I. (2015). Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation. In: Explanation in Biology. History, Philosophy and Theory of the Life Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9822-8_7

Download citation

Publish with us

Policies and ethics