Skip to main content

Chemical Vapor Deposition (CVD)

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 524 Accesses

Synonyms

Aerosol-assisted chemical vapor deposition (AACVD); Atmospheric pressure chemical vapor deposition (APCVD); Atomic layer chemical vapor deposition (ALCVD); Atomic layer deposition (ALD); Atomic layer epitaxial (ALE); Boron nitride nanotubes (BNNTs); Carbon nanotubes (CNTs); Carbon nanowalls; Catalyst; Catalytic chemical vapor deposition (CCVD); Chemical vapor deposition (CVD); Cold-wall thermal chemical vapor deposition; Dissociated adsorption; Double-walled carbon nanotubes (DWCNTs); Graphene; High-pressure carbon monoxide (HiPCO); Hot filament chemical vapor deposition (HFCVD); Hot-wall thermal chemical vapor deposition; Inductively coupled-plasma chemical vapor deposition (ICP-CVD); Low-pressure chemical vapor deposition (LPCVD); Metalorganic chemical vapor deposition (MOCVD); Multiwalled carbon nanotubes (MWCNTs); Nanobelts; Nanocombs; Nanoparticles; Nanotubes; Nanowires; Plasma-enhanced chemical vapor deposition (PECVD); Single-walled carbon nanotubes (SWCNTs); Thermal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsu, D.V., Lucovsky, G., Dvidson, B.N.: Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system. Phys. Rev. B. 40, 1795–1805 (1989)

    Article  Google Scholar 

  2. Menda, J., et al.: A Dual-RF-Plasma Approach for Controlling the Graphitic Order and Diameters of Vertically-Aligned Multiwall Carbon Nanotubes. Appl. Phys. Lett. 87, 173106 (2005) (3 pp)

    Article  Google Scholar 

  3. Hirao, T., et al.: Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition. Jpn. J. Appl. Phys. 40, L631–L634 (2001)

    Article  Google Scholar 

  4. van Laake, L., Hart, A.J., Slocum, A.H.: Suspended heated silicon platform for rapid thermal control of surface reactions with application to carbon nanotube synthesis. Rev. Sci. Instrum. 78, 083901 (2007) (9 pp)

    Article  Google Scholar 

  5. Leskelä, M., Ritala, M.: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548–5554 (2003)

    Article  Google Scholar 

  6. Kayastha, V.K., et al.: Controlling dissociative adsorption for effective growth of carbon nanotubes. Appl. Phys. Lett. 85, 3265–3267 (2004)

    Article  Google Scholar 

  7. Kayastha, V.K., et al.: High-density vertically aligned multiwalled carbon nanotubes with tubular structures. Appl. Phys. Lett. 86, 253105 (2005) (3 pp)

    Article  Google Scholar 

  8. Kayastha, V.K., et al.: Synthesis of vertically aligned single- and double- walled carbon nanotubes without etching agents. J. Phys. Chem. C 111, 10158–10161 (2007)

    Article  Google Scholar 

  9. Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    Article  Google Scholar 

  10. Yamada, T., et al.: Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 1, 131–136 (2006)

    Article  Google Scholar 

  11. Dai, H., et al.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471–475 (1996)

    Article  Google Scholar 

  12. Kong, J., Cassell, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998)

    Article  Google Scholar 

  13. Nikolaev, P., et al.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)

    Article  Google Scholar 

  14. Maruyama, S., et al.: Low-temperature synthesis of high-purity single-walled1 carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)

    Article  Google Scholar 

  15. Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V., Zolotukhin, A.A.: Chemical vapor deposition if thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)

    Article  Google Scholar 

  16. Kim, K.S. et al.: Large-scale pattern growth of graphene films for stretchable trasparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  17. Li, X.S. et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  18. Zhang. W., Wu, P., Li, Z., Yang, J.: First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 115, 17782–17787 (2011)

    Google Scholar 

  19. Gao, J., Yop, J., Zhao, J., Yakobson, B.I., Ding, F.: Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 133, 5009–5015 (2011)

    Article  Google Scholar 

  20. Mensah, S.L., et al.: Formation of single crystalline ZnO nanotubes without catalysts and templates. Appl. Phys. Lett. 90, 113108 (2007)

    Article  Google Scholar 

  21. Mensah, S.L., et al.: Selective growth of pure and long ZnO nanowires by controlled vapor concentration gradients. J. Phys. Chem. C 111, 16092–16095 (2007)

    Article  Google Scholar 

  22. Mensah, S.L., et al.: ZnO nnosquids: banching nnowires from nnotubes and nnorods. J. Nanosci. Nanotechnol. 8, 233–236 (2008)

    Article  Google Scholar 

  23. Lee, C.H., et al.: Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19, 455605 (2008)

    Article  Google Scholar 

  24. Lee, C.H., et al.: Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22, 1782–1787 (2010)

    Article  Google Scholar 

  25. Wang, J., Lee, C.H., Yap, Y.K.: Recent advancements in boron nitride nanotubes. Nanoscale. 2, 2028–2034 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Yoke Khin Yap acknowledges the support from the National Science Foundation (Award number DMR-1261910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoke Khin Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Yap, Y.K., Zhang, D. (2016). Chemical Vapor Deposition (CVD). In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_345

Download citation

Publish with us

Policies and ethics