Skip to main content

Development and Evolution: The Physics Connection

  • Chapter
  • First Online:
Conceptual Change in Biology

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 307))

  • 1675 Accesses

Abstract

This chapter argues that although Darwin aspired to a materialist understanding of evolution, his theory was imbued (in accordance with the physics of his time) with a notion of organisms as passively molded products of their circumstances. The Modern Synthesis that followed from this failed to incorporate new discoveries of physical processes relevant to the formation and transformation of morphological phenotypes and therefore never moved beyond an increasingly obsolete incrementalism it inherited from its originating doctrine. It is proposed here that the emergence of the most distinctive aspects of evolutionary developmental biology in the late twentieth century was due less to insights from comparative genomics than to a growing recognition by a group of cross-disciplinary scientists of the dynamic, nonlinear and plastic nature of developing systems: in particular, the role of physical processes that were unknown to the early evolutionists in producing predictable and often abruptly changing body plans and other morphological motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This aspect of the concept contained echoes of William Bateson and D’Arcy Thompson, as well as the anti-adaptationism of Stephen Jay Gould and Richard Lewontin (e.g., Gould and Lewontin 1979).

  2. 2.

    This aspect reflected the insights of C. H. Waddington and I. I. Schmalhausen on canalization and stabilizing selection, respectively (Waddington 1942; Schmalhausen 1949).

  3. 3.

    In many cases, however, it is possible to discern the continued efficacy of the originating physical mechanisms in present-day organisms (see Forgacs and Newman 2005).

References

  • Abedin, M., and N. King. 2008. The premetazoan ancestry of cadherins. Science 319: 946–948.

    Google Scholar 

  • Akam, M. 1989. Making stripes inelegantly. Nature 341: 282–283.

    Google Scholar 

  • Alberch, P. 1985. Problems with the interpretation of developmental sequences. Systematic Zoology 34: 46–58.

    Google Scholar 

  • Alberch, P., and E.A. Gale. 1983. Size dependence during the development of the amphibian foot. Colchicine-induced digital loss and reduction. Journal of Embryology and Experimental Morphology 76: 177–197.

    Google Scholar 

  • Bateson, W., and B. Bateson. 1928. William Bateson, F.R.S., Naturalist; His essays and addresses, together with a short account of his life. Cambridge: Cambridge University Press.

    Google Scholar 

  • Boiteux, A., A. Goldbeter, and B. Hess. 1975. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: A model and experimental study. Proceedings of the National Academy of Sciences of the United States of America 72: 3829–3833.

    Google Scholar 

  • Bolker, J.A., and R.A. Raff. 1996. Developmental genetics and traditional homology. Bioessays 18: 489–494.

    Google Scholar 

  • Bonner, J.T. (ed.). 1982. Evolution and Development. Dahlem Konferenzen, Berlin: Springer.

    Google Scholar 

  • Budd, G.E. 2008. The earliest fossil record of the animals and its significance. Philosophical Transactions of the Royal Society, B: Biological Sciences 363: 1425–1434.

    Google Scholar 

  • Cardoso, A., A. Serrano, and A.P. Vogler. 2009. Morphological and molecular variation in tiger beetles of the Cicindela hybrida complex: Is an ‘integrative taxonomy’ possible? Molecular Ecology 18: 648–664.

    Google Scholar 

  • Carroll, S.B. 2000. Endless forms: The evolution of gene regulation and morphological diversity. Cell 101: 577–580.

    Google Scholar 

  • Carroll, S.B., and M.P. Scott. 1985. Localization of the fushi tarazu protein during Drosophila embryogenesis. Cell 43: 47–57.

    Google Scholar 

  • Carroll, S.B., J.K. Grenier, and S.D. Weatherbee. 2004. From DNA to diversity: Molecular genetics and the evolution of animal design. Malden: Blackwell.

    Google Scholar 

  • Castets, V., E. Dulos, J. Boissonade, and P. DeKepper. 1990. Experimental evidence of a sustained standing turing-type nonequilibrium chemical pattern. Physical Review Letters 64: 2953–2956.

    Google Scholar 

  • Chouard, T. 2010. Evolution: Revenge of the hopeful monster. Nature 463: 864–867.

    Google Scholar 

  • Christley, S., M.S. Alber, and S.A. Newman. 2007. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Computational Biology 3: e76.

    Google Scholar 

  • Coates, M.I., and J.A. Clack. 1990. Polydactyly in the earliest known tetrapod limbs. Nature 347: 66–69.

    Google Scholar 

  • Conway Morris, S. 2003. Life’s solution: Inevitable humans in a lonely universe. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Conway Morris, S. 2006. Darwin’s dilemma: The realities of the Cambrian ‘explosion’. Philosophical Transactions of the Royal Society, B: Biological Sciences 361: 1069–1083.

    Google Scholar 

  • Cooke, J., and E.C. Zeeman. 1976. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. Journal of Theoretical Biology 58: 455–476.

    Google Scholar 

  • Crick, F.H.C. 1970. Diffusion in embryogenesis. Nature 225: 420–422.

    Google Scholar 

  • Davidson, E.H. 1976. Gene activity in early development, 2nd ed. New York: Academic.

    Google Scholar 

  • Davidson, E.H. 1986. Gene activity in early development, 3rd ed. Orlando: Academic.

    Google Scholar 

  • Davidson, E.H., and D.H. Erwin. 2009. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harbor Symposia on Quantitative Biology 74: 65–80.

    Google Scholar 

  • Dawkins, R. 1996. Climbing mount improbable. New York: Norton.

    Google Scholar 

  • Dennett, D.C. 1995. Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon and Schuster.

    Google Scholar 

  • Dequéant, M.L., and O. Pourquié. 2008. Segmental patterning of the vertebrate embryonic axis. Nature Reviews Genetics 9: 370–382.

    Google Scholar 

  • Duboule, D., and A.S. Wilkins. 1998. The evolution of ‘bricolage’. Trends in Genetics 14: 54–59.

    Google Scholar 

  • Epstein, I.R., and J.A. Pojman. 1998. An introduction to nonlinear chemical dynamics: Oscillations, waves, patterns, and chaos. New York: Oxford University Press.

    Google Scholar 

  • Erwin, D.H. 2000. Macroevolution is more than repeated rounds of microevolution. Evolution and Development 2: 78–84.

    Google Scholar 

  • Forgacs, G., and S.A. Newman. 2005. Biological physics of the developing embryo. Cambridge: Cambridge University Press.

    Google Scholar 

  • Frasch, M., T. Hoey, C. Rushlow, H. Doyle, and M. Levine. 1987. Characterization and localization of the even-skipped protein of Drosophila. EMBO Journal 6: 749–759.

    Google Scholar 

  • Furutani-Seiki, M., and J. Wittbrodt. 2004. Medaka and zebrafish, an evolutionary twin study. Mechanisms of Development 121: 629–637.

    Google Scholar 

  • Gierer, A., and H. Meinhardt. 1972. A theory of biological pattern formation. Kybernetik 12: 30–39.

    Google Scholar 

  • Goldbeter, A. 1996. Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behaviour. Cambridge: Cambridge University Press.

    Google Scholar 

  • Goldbeter, A., and L.A. Segel. 1977. Unified mechanism for relay and oscillation of cyclic AMP in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America 74: 1543–1547.

    Google Scholar 

  • Gomez, C., and O. Pourquié. 2009. Developmental control of segment numbers in vertebrates. Journal of Experimental Zoology (Molecular and Developmental Evolution) 312: 533–544.

    Google Scholar 

  • Goto, T., P. MacDonald, and T. Maniatis. 1989. Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell 57: 413–422.

    Google Scholar 

  • Gould, S.J., and R.C. Lewontin. 1979. The spandrels of San Marco and the panglossian paradigm. Proceedings of the Royal Society B: Biological Sciences 205: 581–598.

    Google Scholar 

  • Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: Facies versus biogeography and evolution. Paleobiology 30: 203–221.

    Google Scholar 

  • Holland, L.Z., P.W. Holland, and N.D. Holland. 1996. Revealing homologies between distantly related animals by in situ hybridization to developmental genes: Amphioxus versus vertebrates. In Molecular zoology, ed. J.D. Ferraris and S.R. Palumbi, 267–295. New York: Wiley-Liss.

    Google Scholar 

  • Hulskamp, M., C. Schroder, C. Pfeifle, H. Jackle, and D. Tautz. 1989. Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338: 629–632.

    Google Scholar 

  • Jaekel, M., and D.B. Wake. 2007. Developmental processes underlying the evolution of a derived foot morphology in salamanders. Proceedings of the National Academy of Sciences of the United States of America 104: 20437–20442.

    Google Scholar 

  • Just, E.E. 1939. The biology of the cell surface. Philadelphia: P. Blakiston’s Son and Co.

    Google Scholar 

  • Kauffman, S.A., R.M. Shymko, and K. Trabert. 1978. Control of sequential compartment formation in Drosophila. Science 199: 259–270.

    Google Scholar 

  • Kay, L.E. 2000. Who wrote the book of life? A history of the genetic code. Stanford: Stanford University Press.

    Google Scholar 

  • King, N., M.J. Westbrook, S.L. Young, A. Kuo, M. Abedin, J. Chapman, S. Fairclough, et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: 783–788.

    Google Scholar 

  • Kiontke, K., A. Barriere, I. Kolotuev, B. Podbilewicz, R. Sommer, D.H. Fitch, and M.A. Felix. 2007. Trends, stasis, and drift in the evolution of nematode vulva development. Current Biology 17: 1925–1937.

    Google Scholar 

  • Kiskowski, M.A., M.S. Alber, G.L. Thomas, J.A. Glazier, N.B. Bronstein, J. Pu, and S.A. Newman. 2004. Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Developmental Biology 271: 372–387.

    Google Scholar 

  • Kolmogorov, A., L. Petrovsky, and N. Piskunov. 1937. An investigation of the diffusion equation combined with an increase in mass and its application to a biological problem. Bulletin of the University of Moscow Ser Int A1(6): 1–26, in Russian.

    Google Scholar 

  • Kondo, S., and T. Miura. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329: 1616–1620.

    Google Scholar 

  • Kuraku, S., and A. Meyer. 2008. Genomic analysis of cichlid fish ‘natural mutants’. Current Opinion in Genetics and Development 18: 551–558.

    Google Scholar 

  • Lander, A.D. 2007. Morpheus unbound: Reimagining the morphogen gradient. Cell 128: 245–256.

    Google Scholar 

  • Lin, K.T., G. Broitman-Maduro, W.W. Hung, S. Cervantes, and M.F. Maduro. 2009. Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Developmental Biology 325: 296–306.

    Google Scholar 

  • Lobe, C.G., and P. Gruss. 1989. Mouse versions of fly developmental control genes: Legitimate or illegitimate relatives? New Biology 1: 9–18.

    Google Scholar 

  • Love, A.C. 2006. Evolutionary morphology and Evo–devo: Hierarchy and novelty. Theory in Biosciences 124: 317–33.

    Google Scholar 

  • Manning, G., S.L. Young, W.T. Miller, and Y. Zhai. 2008. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proceedings of the National Academy of Sciences of the United States of America 105: 9674–9679.

    Google Scholar 

  • Minelli, A. 1998. Molecules, developmental modules, and phenotypes: A combinatorial approach to homology. Molecular Phylogenetics and Evolution 9: 340–347.

    Google Scholar 

  • Minelli, A., A. Chagas-Junior, and G.D. Edgecombe. 2009. Saltational evolution of trunk segment number in centipedes. Evolution & Development 11: 318–322.

    Google Scholar 

  • Minorsky, N. 1962. Nonlinear oscillations. Princeton: Van Nostrand.

    Google Scholar 

  • Miura, T., K. Shiota, G. Morriss-Kay, and P.K. Maini. 2006. Mixed-mode pattern in doublefoot mutant mouse limb—Turing reaction-diffusion model on a growing domain during limb development. Journal of Theoretical Biology 240: 562–573.

    Google Scholar 

  • Müller, G.B. 1990. Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis. In Evolutionary innovations, ed. M. Nitecki, 99–130. Chicago: University of Chicago Press.

    Google Scholar 

  • Müller, G.B. 2007. Evo–devo: Extending the evolutionary synthesis. Nature Reviews Genetics 8: 943–949.

    Google Scholar 

  • Müller, G.B., and S.A. Newman. 1999. Generation, integration, autonomy: Three steps in the evolution of homology. Novartis Foundation Symposium 222: 65–73.

    Google Scholar 

  • Müller, G.B., and S.A. Newman. 2003. Origination of organismal form: The forgotten cause in evolutionary theory. In Origination of organismal form: Beyond the gene in developmental and evolutionary biology, ed. G.B. Müller and S.A. Newman, 3–12. Cambridge, MA: MIT Press.

    Google Scholar 

  • Müller, G.B., and S.A. Newman. 2005. The innovation triad: An evo-devo agenda. Journal of Experimental Zoology (Molecular and Developmental Evolution) 304: 487–503.

    Google Scholar 

  • Newman, S.A. 1992. Generic physical mechanisms of morphogenesis and pattern formation as determinants in the evolution of multicellular organization. In Principles of organization in organisms, ed. J. Mittenthal and A. Baskin, 241–267. Boston: Addison-Wesley.

    Google Scholar 

  • Newman, S.A. 1993. Is segmentation generic? Bioessays 15: 277–283.

    Google Scholar 

  • Newman, S.A. 1994. Generic physical mechanisms of tissue morphogenesis: A common basis for development and evolution. Journal of Evolutionary Biology 7: 467–488.

    Google Scholar 

  • Newman, S.A. 2006. The developmental-genetic toolkit and the molecular homology-analogy paradox. Biological Theory 1: 12–16.

    Google Scholar 

  • Newman, S.A. 2007. William Bateson’s physicalist ideas. In From embryology to evo–devo: A history of evolutionary development, ed. M. Laubichler and J. Maienschein, 83–107. Cambridge, MA: MIT Press.

    Google Scholar 

  • Newman, S.A. 2009. E.E. Just’s “independent irritability” revisited: The activated egg as excitable soft matter. Molecular Reproduction and Development 76: 966–974.

    Google Scholar 

  • Newman, S.A. 2010. Dynamical patterning modules. In Evolution: The extended synthesis, ed. M. Pigliucci and G.B. Müller, 281–306. Cambridge, MA: MIT Press.

    Google Scholar 

  • Newman, S.A. 2011a. The developmental specificity of physical mechanisms. Ludus Vitalis 19: 343–351.

    Google Scholar 

  • Newman, S.A. 2011b. Animal egg as an evolutionary novelty: A solution of the embryonic “hourglass” puzzle. Journal of Experimental Zoology (Molecular and Developmental Evolution) 316: 467–83.

    Google Scholar 

  • Newman, S.A., and R. Bhat. 2008. Dynamical patterning modules: Physico-genetic determinants of morphological development and evolution. Physical Biology 5: 15008.

    Google Scholar 

  • Newman, S.A., and R. Bhat. 2009. Dynamical patterning modules: A “pattern language” for development and evolution of multicellular form. International Journal of Developmental Biology 53: 693–705.

    Google Scholar 

  • Newman, S.A., and R. Bhat. 2011. Lamarck’s dangerous idea. In Transformations of Lamarckism: From subtle fluids to molecular biology, ed. S. Gissis and E. Jablonka, 157–169. Cambridge, MA: MIT Press.

    Google Scholar 

  • Newman, S.A., and W.D. Comper. 1990. ‘Generic’ physical mechanisms of morphogenesis and pattern formation. Development 110: 1–18.

    Google Scholar 

  • Newman, S.A., and H.L. Frisch. 1979. Dynamics of skeletal pattern formation in developing chick limb. Science 205: 662–668.

    Google Scholar 

  • Newman, S.A., and G.B. Müller. 2000. Epigenetic mechanisms of character origination. Journal of Experimental Zoology (Molecular and Developmental Evolution) 288: 304–317.

    Google Scholar 

  • Newman, S.A., and G.B. Müller. 2005. Genes and form: Inherency in the evolution of developmental mechanisms. In Genes in development: Re-reading the molecular paradigm, ed. E. Neumann-Held and C. Rehmann-Sutter, 38–73. Durham: Duke University Press.

    Google Scholar 

  • Newman, S.A., G. Forgacs, and G.B. Müller. 2006. Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology 50: 289–299.

    Google Scholar 

  • Ouyang, Q., and H. Swinney. 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352: 610–612.

    Google Scholar 

  • Palmeirim, I., D. Henrique, D. Ish-Horowicz, and O. Pourquié. 1997. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91: 639–648.

    Google Scholar 

  • Palmer, A.R. 2004. Symmetry breaking and the evolution of development. Science 306: 828–833.

    Google Scholar 

  • Peterson, K.J., J.A. Cotton, J.G. Gehling, and D. Pisani. 2008. The Ediacaran emergence of bilaterians: Congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society, B: Biological Sciences 363: 1435–1443.

    Google Scholar 

  • Provine, W.B. 2001. The origins of theoretical population genetics. 2nd ed. Chicago: University of Chicago Press.

    Google Scholar 

  • Raff, R.A. 1996. The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.

    Google Scholar 

  • Rashevsky, N. 1948. Mathematical biophysics. Chicago: University of Chicago Press.

    Google Scholar 

  • Riedl, R. 1978. Order in living systems: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Rokas, A., D. Kruger, and S.B. Carroll. 2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310: 1933–1938.

    Google Scholar 

  • Ros, M.A., G.E. Lyons, S. Mackem, and J.F. Fallon. 1994. Recombinant limbs as a model to study homeobox gene regulation during limb development. Developmental Biology 166: 59–72.

    Google Scholar 

  • Salazar-Ciudad, I., R. Solé, and S.A. Newman. 2001. Phenotypic and dynamical transitions in model genetic networks. II. Application to the evolution of segmentation mechanisms. Evolution and Development 3: 95–103.

    Google Scholar 

  • Schmalhausen, I.I. 1949. Factors of evolution. Philadelphia: Blakiston.

    Google Scholar 

  • Schoppmeier, M., and W.G. Damen. 2005. Suppressor of hairless and presenilin phenotypes imply involvement of canonical notch-signalling in segmentation of the spider Cupiennius salei. Developmental Biology 280: 211–224.

    Google Scholar 

  • Seaver, E.C. 2003. Segmentation: Mono- or polyphyletic? International Journal of Developmental Biology 47: 583–595.

    Google Scholar 

  • Sebé-Pedrós, A., A.J. Roger, F.B. Lang, N. King, and I. Ruiz-Trillo. 2010. Ancient origin of the integrin-mediated adhesion and signaling machinery. Proceedings of the National Academy of Sciences of the United States of America 107: 10142–10147.

    Google Scholar 

  • Shastry, B.S. 1995. Genetic knockouts in mice: An update. Experientia 51: 1028–1039.

    Google Scholar 

  • Shen, B., L. Dong, S. Xiao, and M. Kowalewski. 2008. The Avalon explosion: Evolution of Ediacara morphospace. Science 319: 81–84.

    Google Scholar 

  • Sheth, R., L. Marcon, M.F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and M.A. Ros. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338: 1476–1480.

    Google Scholar 

  • Shubin, N., C. Tabin, and S. Carroll. 2009. Deep homology and the origins of evolutionary novelty. Nature 457: 818–823.

    Google Scholar 

  • Stanojevic, D., S. Small, and M. Levine. 1991. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254: 1385–1387.

    Google Scholar 

  • Steinberg, M.S. 1978. Specific cell ligands and the differential adhesion hypothesis: How do they fit together? In Specificity of embryological interactions, ed. D.R. Garrod, 97–130. London: Chapman and Hall.

    Google Scholar 

  • Summerbell, D., J.H. Lewis, and L. Wolpert. 1973. Positional information in chick limb morphogenesis. Nature 244: 492–496.

    Google Scholar 

  • Thompson, D.A.W. 1942. On growth and form. Cambridge: Cambridge University Press.

    Google Scholar 

  • True, J.R., and E.S. Haag. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evolution and Development 3: 109–119.

    Google Scholar 

  • Turing, A.M. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society, B: Biological Sciences 237: 37–72.

    Google Scholar 

  • Waddington, C.H. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565.

    Google Scholar 

  • Waddington, C.H. 1961. Genetic assimilation. Advances in Genetics 10: 257–293.

    Google Scholar 

  • Wagner, G.P. 1989. The biological homology concept. Annual Review of Ecology and Systematics 20: 51–69.

    Google Scholar 

  • Wake, D.B. 1991. Homoplasy: The result of natural selection or evidence of design limitations? American Naturalist 138: 543–567.

    Google Scholar 

  • Weber, B.H., and D.J. Depew. 1996. Natural selection and self-organization. Biology & Philosophy 11: 33–65.

    Google Scholar 

  • Webster, M. 2007. A Cambrian peak in morphological variation within trilobite species. Science 317: 499–502.

    Google Scholar 

  • West-Eberhard, M.J. 2003. Developmental plasticity and evolution Oxford. New York: Oxford University Press.

    Google Scholar 

  • Wimsatt, W.C. 1986. Developmental constraints, generative entrenchment, and the innate-acquired distinction. In Integrating scientific disciplines, ed. W. Bechtel. Dordrecht: Nijhoff.

    Google Scholar 

  • Wimsatt, W.C., and J.C. Schank. 2004. Generative entrenchment, modularity and evolvability: When genic selection meets the whole organism. In Modularity in evolution and development, ed. G. Schlosser and G.P. Wagner, 359–394. Chicago: University of Chicago Press.

    Google Scholar 

  • Winfree, A.T. 1980. The geometry of biological time. New York: Springer.

    Google Scholar 

  • Wolpert, L. 1971. Positional information and pattern formation. Current Topics in Developmental Biology 6: 183–224.

    Google Scholar 

  • Yuh, C.H., H. Bolouri, and E.H. Davidson. 1998. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science 279: 1896–1902.

    Google Scholar 

  • Zhu, J., Y.T. Zhang, M.S. Alber, and S.A. Newman. 2010. Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One 5: e10892.

    Google Scholar 

  • Zimmer, A., and P. Gruss. 1989. Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1.1 allele mutated by homologous recombination. Nature 338: 150–153.

    Google Scholar 

  • Zwilling, E. 1964. Development of fragmented and of dissociated limb bud mesoderm. Developmental Biology 89: 20–37.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Ramray Bhat and Marta Linde for critical comments, illuminating insights and guidance to relevant literature. This work was supported in part by a grant from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newman, S.A. (2015). Development and Evolution: The Physics Connection. In: Love, A. (eds) Conceptual Change in Biology. Boston Studies in the Philosophy and History of Science, vol 307. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9412-1_19

Download citation

Publish with us

Policies and ethics