Skip to main content

Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

Following the initial findings suggesting a pro-oncogenic role for p53 point mutants, more than 30 years of research have unveiled the critical role exerted by these mutants in human cancer. A growing body of evidence, including mouse models and clinical data, has clearly demonstrated a connection between mutant p53 and the development of aggressive and metastatic tumors. Even if the molecular mechanisms underlying mutant p53 activities are still the object of intense scrutiny, it seems evident that full activation of its oncogenic role requires the functional interaction with other oncogenic alterations. p53 point mutants, with their pleiotropic effects, simultaneously activating several mechanisms of aggressiveness, are engaged in multiple cross-talk with a variety of other cancer-related processes, thus depicting a complex molecular landscape for the mutant p53 network. In this chapter revealing evidence illustrating different ways through which this cooperation may be achieved will be discussed. Considering the proposed role for mutant p53 as a driver of cancer aggressiveness, disarming mutant p53 function by uncoupling the cooperation with other oncogenic alterations, stands out as an exciting possibility for the development of novel anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levine A, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107. doi:10.1101/cshperspect.a001107

    PubMed  PubMed Central  Google Scholar 

  3. Lozano G (2010) Mouse models of p53 functions. Cold Spring Harb Perspect Biol 2: a001115. doi: 10.1101/cshperspect.a001115

  4. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    CAS  PubMed  Google Scholar 

  5. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Catalogue of Somatic Mutations in Cancer (COSMIC) (2013) Wellcome Trust Sanger Institute. Hinxton, UK. http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

  7. Balmain A, Brown K (1988) Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51:147–182

    CAS  PubMed  Google Scholar 

  8. Hinds P, Finlay C, Levine A (1989) Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinds PW et al (1990) Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ 1:571–580

    CAS  PubMed  Google Scholar 

  10. Lang GA et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    CAS  PubMed  Google Scholar 

  11. Girardini JE et al (2011) A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20:79–91

    CAS  PubMed  Google Scholar 

  12. Hingorani S et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    CAS  PubMed  Google Scholar 

  13. Hruban RH, Iacobuzio-Donahue C, Wilentz RE, Goggins M, Kern SE (2001) Molecular pathology of pancreatic cancer. Cancer J 7:251–258

    Google Scholar 

  14. Bolshakov S et al (2003) p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res 9:228–234

    CAS  PubMed  Google Scholar 

  15. Brash DA et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88:10124–10128

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pierceall WE et al (1991) Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog 4:196–202

    CAS  PubMed  Google Scholar 

  17. Spencer JM et al (1995) Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch Dermatol 131:786–800

    Google Scholar 

  18. Caulin C et al (2007) An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117:1893–1901

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gualberto A, Aldape K, Kozakiewicz K, Tlsty TD (1998) An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc Natl Acad Sci U S A 95:5166–5177

    CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Hizawi S, Lagowski JP, Kulesz-Martin M, Albor A (2002) Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins. Cancer Res 62:3264–3270

    CAS  PubMed  Google Scholar 

  21. Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9:573–580

    CAS  PubMed  Google Scholar 

  22. Adorno M et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFb-Induced metastasis. Cell 137:87–98

    CAS  PubMed  Google Scholar 

  23. Solomon H et al (2012) Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer-related gene signature. J Cell Sci 125:3144–3152

    CAS  PubMed  Google Scholar 

  24. Murray-Zmijewski F, Slee EA, Lu X (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9:702–712

    CAS  PubMed  Google Scholar 

  25. Terzian T et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Suh YA et al (2011) Multiple stress signals activate mutant p53 in vivo. Cancer Res 71:7168–7175

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Olive KP et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    CAS  PubMed  Google Scholar 

  28. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8

    CAS  PubMed  Google Scholar 

  29. Deb SP (2003) Cell cycle regulatory functions of the human oncoprotein MDM2. Mol Cancer Res 1:1009–1016

    CAS  PubMed  Google Scholar 

  30. Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1:993–1000

    CAS  PubMed  Google Scholar 

  31. Bouska A, Eischen CM (2009) Mdm2 affects genome stability independent of p53. Cancer Res 69:1697–1701

    CAS  PubMed  Google Scholar 

  32. Midgley CA, Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15:1179–1189

    CAS  PubMed  Google Scholar 

  33. Lukashchuk N, Vousden KH (2007) Ubiquitination and degradation of mutant p53. Mol Cell Biol 27:8284–8295

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li D et al (2011) Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res 9:577–588

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng Y et al (2001) Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J Biol Chem 276:40583–40590

    CAS  PubMed  Google Scholar 

  36. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    CAS  PubMed  Google Scholar 

  37. Finlay CA et al (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blagosklonny MV, Toretsky J, Bohen S, Neckers L (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A 93:8379–8383

    CAS  PubMed  PubMed Central  Google Scholar 

  39. King FW, Wawrzynow A, Höhfeld J, Zylicz M (2001) Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J 20:6297–6305

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Whitesell L et al (1988) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18:1517–1524

    Google Scholar 

  41. Blagosklonny MV et al (2005) Depletion of mutant p53 and cytotoxicity of histone deacetylase inhibitors. Cancer Res 65:7386–7392

    CAS  PubMed  Google Scholar 

  42. Li D, Marchenko ND, Moll UM (2011) SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ 18:1904–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan W et al (2013) Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene 32:599–609

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Post SM et al (2010) p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 29:1260–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo L et al (2012) Ionizing radiation induces a dramatic persistence of p53 protein accumulation and DNA damage signaling in mutant p53 zebrafish. Oncogene. doi:10.1038/onc.2012.409

  46. Minamoto T et al (2001) Distinct pattern of p53 phosphorylation in human tumors. Oncogene 20:3341–3347

    CAS  PubMed  Google Scholar 

  47. Matsumoto M, Furihata M, Ohtsuki Y (2006) Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol 39:79–87

    CAS  PubMed  Google Scholar 

  48. Di Agostino S et al (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    PubMed  Google Scholar 

  49. Valenti F et al (2011) Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle 10:4330–4340

    CAS  PubMed  Google Scholar 

  50. Tan LB et al (2010) Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis. World J Urol 28:117–122

    CAS  PubMed  Google Scholar 

  51. Matsumoto T et al (2009) Polo-like kinases mediate cell survival in mitochondrial dysfunction. Proc Natl Acad Sci U S A 106:14542–14546

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Strebhardt K (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9:643–660

    CAS  PubMed  Google Scholar 

  53. Syed N et al (2011) Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer. Cancer Res 71:3317–3327

    CAS  PubMed  Google Scholar 

  54. Yap D et al (2004) Ser392 phosphorylation regulates the oncogenic function of mutant p53. Cancer Res 64:4749–4754

    CAS  PubMed  Google Scholar 

  55. Matsumoto M, Furihata M, Kurabayashi A, Ohtsuki Y (2004) Phosphorylation state of tumor-suppressor gene p53 product overexpressed in skin tumors. Oncol Rep 12:1039–1043

    CAS  PubMed  Google Scholar 

  56. Matsumoto M et al (2004) Prognostic significance of serine 392 phosphorylation in overexpressed p53 protein in human esophageal squamous cell carcinoma. Oncology 67:143–150

    CAS  PubMed  Google Scholar 

  57. Furihata M et al (2002) Frequent phosphorylation at serine 392 in overexpressed p53 protein due to missense mutation in carcinoma of the urinary tract. J Pathol 197:82–88

    CAS  PubMed  Google Scholar 

  58. Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89:875–886

    CAS  PubMed  Google Scholar 

  59. Yaffe MB et al (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278:1957–1960

    CAS  PubMed  Google Scholar 

  60. Liou YC, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36:501–514

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown NR et al (1999) Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274:8746–8756

    CAS  PubMed  Google Scholar 

  62. Weiwad M, Kullertz G, Schutkowski M, Fischer G (2000) Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett 478:39–42

    CAS  PubMed  Google Scholar 

  63. Zhou XZ et al (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6:873–883

    CAS  PubMed  Google Scholar 

  64. Yeh E, Means AR (2007) PIN1, the cell cycle and cancer. Nat Rev Cancer 7:381–388

    CAS  PubMed  Google Scholar 

  65. Bao L et al (2004) Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 164:1727–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wulf G et al (2004) Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 23:3397–3407

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zacchi P et al (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419:853–857

    CAS  PubMed  Google Scholar 

  68. Zheng H et al (2002) The Prolyl isomerase Pin1 is a novel regulator of p53 in genotoxic response. Nature 419:849–853

    CAS  PubMed  Google Scholar 

  69. Mantovani F et al (2007) The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14:912–920

    CAS  PubMed  Google Scholar 

  70. Tan X et al (2010) Pin1 expression contributes to lung cancer: prognosis and carcinogenesis. Cancer Biol Ther 9:111–119

    CAS  PubMed  Google Scholar 

  71. Ayala G et al (2003) The Prolyl Isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res 63:6244–6251

    CAS  PubMed  Google Scholar 

  72. Leung KW et al (2009) Pin1 overexpression is associated with poor differentiation and survival in oral squamous cell carcinoma. Oncol Rep 21:1097–1104

    CAS  PubMed  Google Scholar 

  73. Mantovani F et al (2004) Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 14:625–636

    CAS  PubMed  Google Scholar 

  74. Yeh E et al (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6:308–318

    CAS  PubMed  Google Scholar 

  75. Yeh E, Lew BO, Means AR (2006) The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J Biol Chem 281:241–251

    CAS  PubMed  Google Scholar 

  76. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  77. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    CAS  PubMed  Google Scholar 

  78. Grünert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665

    PubMed  Google Scholar 

  79. Kalo E et al (2007) Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 27:8228–8242

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin S et al (2011) Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-ß (TGF-ß). J Biol Chem 286:44023–44034

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen G et al (2012) Transforming growth factor ß1 (TGF-ß1) suppresses growth of B-cell lymphoma cells by p14(ARF)-dependent regulation of mutant p53. J Biol Chem 287:23184–23195

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Colston KW, Chander SK, Mackay AG, Coombes RC (1992) Effects of synthetic vitamin D analogues on breast cancer cell proliferation in vivo and in vitro. Biochem Pharmacol 44:693–702

    CAS  PubMed  Google Scholar 

  83. Nakagawa K et al (2005) 22-Oxa-1alpha,25-dihydroxyvitamin D3 inhibits metastasis and angiogenesis in lung cancer. Carcinogenesis 26:1044–1054

    CAS  PubMed  Google Scholar 

  84. Kerner SA, Scott RA, Pike JW (1989) Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A 86:4455–4459

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zinser G, Packman K, Welsh J (2002) Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development 129:3067–3076

    CAS  PubMed  Google Scholar 

  86. Zinser G, Sundberg JP, Welsh J (2002) Vitamin D(3) receptor ablation sensitizes skin to chemically induced tumorigenesis. Carcinogenesis 23(12):2103–2109

    CAS  PubMed  Google Scholar 

  87. Wang SH et al (1999) 1Alpha,25-dihydroxyvitamin D3 up-regulates Bcl-2 expression and protects normal human thyrocytes from programmed cell death. Endocrinology 140:1649–1656

    CAS  PubMed  Google Scholar 

  88. Duque G et al (2004) Vitamin D inhibits Fas ligand-induced apoptosis in human osteoblasts by regulating components of both the mitochondrial and Fas-related pathways. Bone 35:57–64

    CAS  PubMed  Google Scholar 

  89. Friedrich M et al (1998) Expression of 1,25-dihydroxy vitamin D3 receptor in breast carcinoma. J Histochem Cytochem 46:1335–1337

    CAS  PubMed  Google Scholar 

  90. Friedrich M et al (2002) Analysis of vitamin D-receptor (VDR) and retinoid X-receptor alpha in breast cancer. Histochem J 34:35–40

    CAS  PubMed  Google Scholar 

  91. Sahin MO et al (2005) 1,25 Dihydroxyvitamin D(3) receptor expression in superficial transitional cell carcinoma of the bladder: a possible prognostic factor? Eur Urol 47:52–57

    CAS  PubMed  Google Scholar 

  92. Menezes RJ et al (2008) Vitamin D receptor expression in normal, premalignant, and malignant human lung tissue. Cancer Epidemiol Biomarkers Prev 17:1104–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Stambolsky P et al (2010) Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17:273–285

    CAS  PubMed  PubMed Central  Google Scholar 

  94. White DP, Caswell PT, Norman JC (2007) Alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Caswell PT, Norman JC (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263

    CAS  PubMed  Google Scholar 

  96. Caswell PT et al (2008) Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 183:143–155

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Muller P et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    PubMed  Google Scholar 

  98. Muller P et al (2012) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32:1252–1265

    PubMed  PubMed Central  Google Scholar 

  99. Chaturvedi MM et al (2011) NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30:1615–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  100. DiDonato JA, Mercurio F, Karim M (2012) NF-κB and the link between inflammation and cancer. Immunol Rev 246:379–400

    PubMed  Google Scholar 

  101. Scian M et al (2005) Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 25:10097–10110

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Vaughan CA et al (2012) p53 mutants induce transcription of NF-?B2 in H1299 cells through CBP and STAT binding on the NF-?B2 promoter and gain of function activity. Arch Biochem Biophys 518:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Weisz L et al (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67:2396–2401

    CAS  PubMed  Google Scholar 

  104. Yeudall WA et al (2012) Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33:442–451

    CAS  PubMed  Google Scholar 

  105. Richmond A (2002) Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol 2:664–674

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 284:6038–6042

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fontemaggi G et al (2009) The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16:1086–1093

    CAS  PubMed  Google Scholar 

  108. Liu K, Ling S, Lin WC (2011) TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol Cell Biol 31:4464–4481

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu K et al (2009) Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer. Mol Cell Biol 29:2673–2693

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Su X et al (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467:986–990

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tomasini R et al (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22:2677–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Neilsen PM et al (2011) Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2:1203–1217

    PubMed  PubMed Central  Google Scholar 

  113. Romano RA et al (2012) DNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 139:772–782

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee HO et al (2006) A dominant negative form of p63 inhibits apoptosis in a p53-independent manner. Biochem Biophys Res Commun 344:166–172

    CAS  PubMed  Google Scholar 

  115. Martynova E et al (2012) Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 3(2):132–143

    PubMed  PubMed Central  Google Scholar 

  116. Khoury MP, Bourdon JC (2011) p53 isoforms: an intracellular microprocessor? Genes Cancer 2:453–465

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bourdon JC et al (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bourdon JC et al (2011) p53 mutant breast cancer patients expressing p53? have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 13:R7. doi:10.1186/bcr2811

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Olivier M et al (2006) The clinical calue of somatic TP53 GeneMutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    CAS  PubMed  Google Scholar 

  120. Scoccianti C et al (2012) Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur Respir J 40:177–184

    CAS  PubMed  Google Scholar 

  121. Muller P, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    CAS  PubMed  Google Scholar 

  122. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  123. Sørlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    PubMed  PubMed Central  Google Scholar 

  124. Langerød A et al (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9:R30

    PubMed  PubMed Central  Google Scholar 

  125. Brázdová M et al (2009) Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res 37:1486–1500

    PubMed  PubMed Central  Google Scholar 

  126. Rønnenberg JA et al (2011) Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 5:61–76

    Google Scholar 

  127. Bond GL et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119(5):591–602

    CAS  PubMed  Google Scholar 

  128. Boersma BJ et al (2006) Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst 98:911–919

    CAS  PubMed  Google Scholar 

  129. Burke L et al (2005) Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma. Clin Cancer Res 11:232–2431

    CAS  PubMed  Google Scholar 

  130. Freed-Pastor WA et al (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148:244–258

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamauchi Y, Furukawa K, Hamamura K, Furukawa K (2011) Positive feedback loop between PI3K-Akt-mTORC1 signaling and the lipogenic pathway boosts Akt signaling: induction of the lipogenic pathway by a melanoma antigen. Cancer Res 71:4989–4997

    CAS  PubMed  Google Scholar 

  132. Luu W, Sharpe LJ, Stevenson J, Brown AJ (2012) Akt acutely activates the cholesterogenic transcription factor SREBP-2. Biochim Biophys Acta 1823:458–464

    CAS  PubMed  Google Scholar 

  133. Bakan I, Laplante M (2012) Connecting mTORC1 signaling to SREBP-1 activation. Curr Opin Lipidol 23:226–234

    CAS  PubMed  Google Scholar 

  134. Ruano R et al (2009) Worse outcome in primary glioblastoma multiforme with concurrent epidermal growth factor receptor and p53 alteration. Am J Clin Pathol 131:257–263

    CAS  PubMed  Google Scholar 

  135. Bull SV et al (2004) The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol 22:86–96

    CAS  PubMed  Google Scholar 

  136. Yang YC et al (2006) Joint association of polymorphism of the FGFR4 gene and mutation TP53 gene with bladder cancer prognosis. Br J Cancer 95:1455–1458

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giannino Del Sal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Girardini, J.E., Walerych, D., Del Sal, G. (2014). Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_3

Download citation

Publish with us

Policies and ethics