Skip to main content

Analyzing the Patterns of Space-Time Distances for Tracking the Diffusion of an Epidemic

  • Chapter
  • First Online:
Space-Time Integration in Geography and GIScience

Abstract

Understanding the dynamics of how infectious diseases spread in time and space is the primary concern of epidemic control and prevention. Spatial methods of tracking the possible sources of infection have not been well developed. The objective of this study is to propose an innovative methodology that combines exploratory spatial-temporal analysis and network topological analysis to identify diffusion patterns and track possible sources of an epidemic. The methodology is composed of two stages. The first stage involves establishing case-to-case distances in space and time. Using a diagram of space-time distances, the space-time clustering of cases can be identified. In the second stage, the network topology of space-time distances is further analyzed. We use two network indicators, degree centrality and network clustering coefficient, to measure the risk of epidemic diffusion. The feasibility of our proposed methodology is assessed by a case study on a dengue epidemic in Kaohsiung, Taiwan. . Our results show that this method can be used to detect the possible origin of an epidemic and to differentiate patterns of spatial diffusion. Spatial-temporal transitions in epidemic progression from local to large-scale transmission are also determined. This study contributes a methodology on modeling spatial-temporal epidemic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrett, C. L., Eubank, S. G., & Smith, J. P. (2005). If smallpox strikes Portland…. Scientific American, 292(3), 54–61. doi:10.1038/scientificamerican0305-54.

    Article  Google Scholar 

  • Carpenter, T. E. (2001). Methods to investigate spatial and temporal clustering in veterinary epidemiology. Preventive Veterinary Medicine, 48(4), 303–320. doi:10.1016/S0167-5877(00)00199-9.

    Article  Google Scholar 

  • Cowled, B., Ward, M. P., Hamilton, S., & Garner, G. (2009). The equine influenza epidemic in Australia: Spatial and temporal descriptive analyses of a large propagating epidemic. Preventive Veterinary Medicine, 92(1–2), 60–70. doi:10.1016/j.prevetmed.2009.08.006.

    Article  Google Scholar 

  • Firestone, S. M., Ward, M. P., Christley, R. M., & Dhand, N. K. (2011). The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis. Preventive Veterinary Medicine, 102(3), 185–195. doi:10.1016/j.prevetmed.2011.07.006.

    Article  Google Scholar 

  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. doi:10.1016/0378-8733(78)90021-7.

    Article  Google Scholar 

  • Gong, H., DeGaetano, A. T., & Harrington, L. C. (2011). Climate-based models for West Nile Culex mosquito vectors in the Northeastern US. International Journal of Biometeorology, 55(3), 435–446. doi:10.1007/s00484-010-0354-9.

    Article  Google Scholar 

  • Huang, C. Y., Tsai, Y. S., & Sun, C. T. (2010). Effects of friend-making resources costs and remembering on acquaintance networks. PHYSICA A: Statistical Mechanics and Its Applications, 389(3), 604–622. doi:10.1016/j.physa.2009.09.038.

    Article  Google Scholar 

  • Jones, J. H., & Handcock, M. S. (2003). Social networks (communication arising): Sexual contacts and epidemic thresholds. Nature, 423(6940), 605–606.

    Article  Google Scholar 

  • Knox, E., & Bartlett, M. (1964). The detection of space-time interactions. Journal of the Royal Statistical Society, Series C, 13(1), 25–30.

    Google Scholar 

  • Kulldorff, M., & Hjalmars, U. (1999). The Knox method and other tests for space-time interaction. Biometrics, 55(2), 544–552. doi:10.1111/j.0006-341X.1999.00544.x.

    Article  Google Scholar 

  • Kvanli, A. H., Pavur, R. J., & Keeling, K. B. (2005). Concise managerial statistics (1st ed., p. 656). Cincinnati: South-Western College Publishing.

    Google Scholar 

  • Morin, C. W., & Comrie, A. C. (2010). Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model. International Journal of Biometeorology, 54(5), 517–529. doi:10.1007/s00484-010-0349-6.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2002). Immunization of complex networks. Physical Review E, 65(3), 36104. doi:10.1103/PhysRevE.65.036104.

    Article  Google Scholar 

  • Tsai, Y.-S., Huang, C.-Y., Wen, T.-H., Sun, C.-T., & Yen, M.-Y. (2011). Integrating epidemic dynamics with daily commuting networks: Building a multilayer framework to assess influenza A (H1N1) intervention policies. Simulation, 87(5), 385–405. doi:10.1177/0037549710379481.

    Article  Google Scholar 

  • Wen, T.-H., Lin, N. H., Lin, C.-H., King, C.-C., & Su, M.-D. (2006). Spatial mapping of temporal risk characteristics to improve environmental health risk identification: A case study of a dengue epidemic in Taiwan. Science of the Total Environment, 367(2–3), 631–640. doi:10.1016/j.scitotenv.2006.02.009.

    Article  Google Scholar 

  • Wen, T.-H., Lin, M.-H., & Fang, C.-T. (2012). Population movement and vector-borne disease transmission: Differentiating spatial-temporal diffusion patterns of commuting and non-commuting dengue cases. Annals of the Association of American Geographers, 102(5), 1026–1037. doi:10.1080/00045608.2012.671130.

    Article  Google Scholar 

  • Wilesmith, J. W., Stevenson, M. A., King, C. B., & Morris, R. S. (2003). Spatio-temporal epidemiology of foot-and-mouth disease in two counties of Great Britain in 2001. Preventive Veterinary Medicine, 61(3), 157–170. doi:10.1016/j.prevetmed.2003.08.002.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the grants of National Science Council in Taiwan (NSC 98-2410-H-002-168-MY2, NSC 101-2119-M-002-020). The authors also acknowledge the financial support provided by Infectious Diseases Research and Education Center, Department of Health and National Taiwan University. The funder had no role in study design, data collection and analysis, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzai-Hung Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Wen, TH., Tsai, YS. (2015). Analyzing the Patterns of Space-Time Distances for Tracking the Diffusion of an Epidemic. In: Kwan, MP., Richardson, D., Wang, D., Zhou, C. (eds) Space-Time Integration in Geography and GIScience. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9205-9_15

Download citation

Publish with us

Policies and ethics