Skip to main content

Photosystem II Efficiency and Non-Photochemical Fluorescence Quenching in the Context of Source-Sink Balance

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Products of photosynthesis (reduced carbon, typically in the form of sugars), synthesized by a plant’s mature source leaves, are exported to the plant’s sinks for growth, storage, and/or maintenance respiration. When the rate of sugar production in source leaves exceeds the rate of export (often as a result of insufficient sink activity), sugars and starch accumulate in source leaves. In a feedback response, levels of messenger RNAs, coding for various photosynthetic proteins, of source leaves are repressed along with the levels of these proteins. Furthermore, the overall capacity for photosynthetic CO2 fixation is also decreased. Consequently, these source leaves with decreased rates of photosynthetic electron transport utilize a lessened fraction of the light they absorb for photochemistry, and should thus increase the level of thermal dissipation of (excess) absorbed light. Thermal dissipation can be assessed as increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, as well as decreased intrinsic photosystem II (PS II) efficiency, the ratio of variable to maximal chlorophyll fluorescence Fv/Fm (in darkness) or F v /F m (in the light) (Fv being Fm – Fo; where v stands for variable, m for maximum, and o for minimum). Greater source activity relative to sink activity within the whole plant, resulting in starch and/or sugar accumulation, indeed leads to increases in thermal dissipation and in the concentration of zeaxanthin, a xanthophyll involved in thermal dissipation. Under severe conditions, high zeaxanthin levels, high thermal energy dissipation, and low PS II efficiency in source leaves become locked-in as part of a state of chronic photoinhibition associated with high foliar levels of sugar and starch. A correlation between photoinhibition and foliar non-structural carbohydrate accumulation is a common occurrence. In this chapter, we discuss various potential underlying causes for this correlation, including the possibility that reduced growth of plants under stress conditions leads to sink limitation, foliar starch and sugar accumulation, and photoinhibition as a manifestation of photosynthetic repression under excess light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

The carotenoid antheraxanthin

CBc:

Calvin-Benson cycle

F:

Fluorescence

Fm, F m :

Maximal chlorophyll fluorescence in the dark- and light-adapted state, respectively

Fo :

Minimal chlorophyll fluorescence in the dark-adapted state

Fv, F v :

Variable chlorophyll fluorescence in the dark-adapted (Fm–Fo) and light-adapted (Fm–F o ) state, respectively

Fv/Fm, F v /F m :

Intrinsic efficiency (or quantum yield) of photosystem II in the dark- and light-adapted state, respectively

NPQ:

Non-photochemical quenching of chlorophyll fluorescence

PFD:

Photon flux density

PS II:

Photosystem II

ROS:

Reactive oxygen species

V:

The carotenoid violaxanthin

VAZ cycle:

The xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin, and zeaxanthin

Z:

The carotenoid zeaxanthin

References

  • Adams WW III, Barker DH (1998) Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall. Plant Cell Environ 21:501–512

    CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186:390–398

    CAS  PubMed  Google Scholar 

  • Adams WW III, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol Plant 92:451–458

    CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B (1995) The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter. Plant Cell Environ 18:117–127

    Google Scholar 

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 583–604

    Google Scholar 

  • Adams WW III, Smith SD, Osmond CB (1987) Photoinhibition of the CAM succulent Opuntia basilaris in Death Valley: evidence from 77K fluorescence and quantum yield. Oecologia 71:221–228

    Google Scholar 

  • Adams WW III, Hoehn A, Demmig-Adams B (1995a) Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust J Plant Physiol 22:75–85

    CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Barker DH (1995b) ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Logan BA, Barker DH, Osmond CB (1999) Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ 22:125–136

    CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Ebbert V (2001a) Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. Photosynth Res 67:51–62

    CAS  PubMed  Google Scholar 

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Ebbert V, Brightwell AK, Barker DH, Zarter CR (2001b) Photosynthesis, xanthophylls, and D1 phosphorylation under winter stress. In: PS2001 proceedings: 12th international congress on photosynthesis, S3-001. CSIRO Publishing, Melbourne. Available at http://www.publish.csiro.au/paper/SA0403060.htm

  • Adams WW III, Demmig-Adams B, Rosenstiel TN, Brightwell AK, Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biol 4:545–557

    Google Scholar 

  • Adams WW III, Zarter CR, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49

    Google Scholar 

  • Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 49–64

    Google Scholar 

  • Adams WW III, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94:455–466

    CAS  PubMed  Google Scholar 

  • Adams WW III, Cohu CM, Muller O, Demmig-Adams B (2013a) Foliar phloem infrastructure in support of photosynthesis. Front Plant Sci 4:194

    PubMed Central  PubMed  Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013b) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    CAS  PubMed  Google Scholar 

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Res 76:343–370

    CAS  PubMed  Google Scholar 

  • Alves PLDA, Magalhães ACN, Barja PR (2002) The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot Rev 68:193–208

    Google Scholar 

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW III (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA 102:12968–12973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson JM, Thomson WW (1989) Dynamic molecular organization of the plant thylakoid membrane. In: Briggs WR (ed) Photosynthesis. Alan R. Liss, New York, pp 161–182

    Google Scholar 

  • Baker NR, Bowyer JR (eds) (1994) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford

    Google Scholar 

  • Baker NR, Farage PK, Stirling CM, Long SP (1994) Photoinhibition of crop photosynthesis in the field at low temperatures. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 349–363

    Google Scholar 

  • Ball MC (1994) The role of photoinhibition during tree seedling establishment at low temperatures. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 365–376

    Google Scholar 

  • Barker DH, Adams WW III, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert. Plant Cell Environ 25:95–103

    CAS  Google Scholar 

  • Blennow K, Lang ARG, Dunne P, Ball MC (1998) Cold-induced photoinhibition and growth of seedling snow gum (Eucalyptus pauciflora) under differing temperature and radiation regimes in fragmented forests. Plant Cell Environ 21:407–416

    Google Scholar 

  • Boese SR, Huner HPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell DA, Tyystjärvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265

    CAS  PubMed  Google Scholar 

  • Castro A, Fetcher N, Fernández DS (1995) Chronic photoinhibition in seedlings of tropical trees. Physiol Plant 94:560–565

    CAS  Google Scholar 

  • Chen LB, Jia HY, Tian Q, Du LB, Gao YL, Miao XX, Liu Y (2012) Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light. Photosynth Res 112:141–148

    CAS  PubMed  Google Scholar 

  • Cheng J, Fan P, Liang Z, Wang Y, Niu N, Li W, Li S (2009) Accumulation of end products in source leaves affects photosynthetic rate in peach via alteration of stomatal conductance and photosynthetic efficiency. J Am Soc Hortic Sci 134:667–676

    Google Scholar 

  • Close DC, Beadle CL (2003) Chilling-induced photoinhibition, nutrition and growth analysis of Eucalyptus nitens seedlings during establishment. Tree Physiol 23:217–226

    PubMed  Google Scholar 

  • Cohu CM, Muller O, Demmig-Adams B, Adams WW III (2013a) Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes. Front Plant Sci 4:240

    PubMed Central  PubMed  Google Scholar 

  • Cohu CM, Muller O, Demmig-Adams B, Adams WW III (2013b) Association between minor loading vein architecture and light- and CO2-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes. Front Plant Sci 4:264

    PubMed Central  PubMed  Google Scholar 

  • Cohu CM, Muller O, Adams WW III, Demmig-Adams B (2014) Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals. Physiol Plant 152:164–173. doi: 10.1111/ppl.121154

  • Demmig B, Winter K, Krüger A, Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87:17–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1990) The carotenoid zeaxanthin and “high-energy-state” quenching of chlorophyll fluorescence. Photosynth Res 25:187–197

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (1994a) Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Aust J Plant Physiol 21:575–588

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1994b) Light stress and photoprotection related to the xanthophyll cycle. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, pp 105–126

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996a) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996b) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygan F-C (1989a) Light response of CO2 assimilation, dissipation of excess excitation energy, and zeaxanthin content of sun and shade leaves. Plant Physiol 90:881–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygan F-C (1989b) Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiol 90:887–893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygan F-C (1989c) Zeaxanthin synthesis, energy dissipation, and photoprotection of photosystem II at chilling temperatures. Plant Physiol 90:894–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Heber U, Neimanis S, Winter K, Krüger A, Czygan F-C, Bilger W, Björkman O (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92:293–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Logan BA, Verhoeven AS (1995) Xanthophyll cycle-dependent energy dissipation and flexible PSII efficiency in plants acclimated to light stress. Aust J Plant Physiol 22:249–260

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    CAS  Google Scholar 

  • Demmig-Adams B, Moeller DL, Logan BA, Adams WW III (1998) Positive correlation between levels of retained zeaxanthin + antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola. Planta 205:367–374

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Ebbert V, Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis, Volume 8. Kluwer Academic (now Springer), Dordrecht, pp 245–269

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR, Adams WW III (2006a) Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 39–48

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L, Funk C, Zarter CR, Adamska I, Jansson S, Adams WW III (2006b) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol Plant 127:670–680

    CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Amiard V, Cohu CM, Muller O, van Zadelhoff G, Veldink GA, Adams WW III (2013) Emerging trade-offs – impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. New Phytol 197:720–729

    CAS  PubMed  Google Scholar 

  • Duan W, Fan PG, Wan LJ, Li WD, Yan ST, Li SH (2008) Photosynthetic response to low sink demand after fruit removal in relation to photoinhibition and photoprotection in peach trees. Tree Physiol 28:123–132

    CAS  PubMed  Google Scholar 

  • Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW III, Demmig-Adams B (2012) Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynth Res 113:181–189

    CAS  PubMed  Google Scholar 

  • Ebbert V, Adams WW III, Mattoo AK, Sokolenko A, Demmig-Adams B (2005) Upregulation of a PSII core protein phosphatase inhibitor and sustained D1 phosphorylation in zeaxanthin-retaining, photoinhibited needles of overwintering Douglas fir. Plant Cell Environ 28:232–240

    CAS  Google Scholar 

  • Einhorn KS, Rosenqvist E, Levernz JW (2004) Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration? Oecologia 140:241–251

    PubMed  Google Scholar 

  • Ensminger I, Sceshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Öquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob Chang Biol 10:995–1008

    Google Scholar 

  • Esteban R, Jiménez MS, Morales D, Jiménez ET, Hormaetxe K, Becerril JM, Osmond B, García-Plazaola JI (2008) Short- and long-term modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana Mill.). Plant Biol 10:288–297

    CAS  PubMed  Google Scholar 

  • Esteban R, Matsubara S, Jiménez MS, Morales D, Brito P, Lorenzo R, Fernández-Marin B, Becerril JM, García-Plazaola JI (2010) Operation and regulation of the lutein epoxide cycle in seedlings of Ocotea foetens. Funct Plant Biol 37:859–869

    CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Google Scholar 

  • Falkowski PG, Greene R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 407–432

    Google Scholar 

  • Farage PR, Long SP (1991) The occurrence of photoinhibition in an over-wintering crop of oil-seed rape (Brassica napus L.) and its correlation with changes in crop growth. Planta 185:279–286

    CAS  PubMed  Google Scholar 

  • Förster B, Pogson BJ, Osmond CB (2011) Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. Plant Physiol 156:393–403

    PubMed Central  PubMed  Google Scholar 

  • Gilmore AM, Ball MC (2000) Protection and storage of chlorophyll in overwintering evergreens. Proc Natl Acad Sci USA 97:11098–11101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godde D, Hefer M (1994) Photoinhibition and light-dependent turnover of the D1 reaction-centre polypeptide of photosystem II are enhanced by mineral-stress conditions. Planta 193:290–299

    CAS  Google Scholar 

  • Goh CH, Ko SM, Koh S, Kim YJ, Bae HJ (2012) Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J Plant Biol 55:93–101

    CAS  Google Scholar 

  • Gorsuch PA, Pandey S, Atkin OK (2010) Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ 33:244–258

    CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Kluwer Academic (now Springer), Dordrecht, pp 2–42

    Google Scholar 

  • Hager A (1980) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Czygan F-C (ed) Pigments in Plants, 2nd edn. Gustav Fischer Verlag, Stuttgart, pp 57–79

    Google Scholar 

  • Han S, Tang N, Jiang H-X, Yang L-T, Li Y, Chen L-S (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    CAS  Google Scholar 

  • Hartmann H, Ziegler W, Kolle O, Trumbore S (2013) Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce seedlings. New Phytol 200:340–349

    CAS  PubMed  Google Scholar 

  • Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hymus GJ, Ellsworth DS, Baker NR, Long SP (1999) Does free-air carbon dioxide enrichment affect photochemical energy use by evergreen trees in different seasons? A chlorophyll fluorescence study of mature loblolly pine. Plant Physiol 120:1183–1191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hymus GJ, Dukstra P, Baker NR, Drake BG, Long SP (2001) Will rising CO2 protect plants from the midday sun? A study of photoinhibition of Quercus myrtifolia in a scrub-oak community in two seasons. Plant Cell Environ 24:1361–1368

    CAS  Google Scholar 

  • Jones PG, Lloyd JC, Raines CA (1996) Glucose feeding of intact wheat plants represses the expression of a number of Calvin cycle genes. Plant Cell Environ 19:231–236

    CAS  Google Scholar 

  • Keren N, Krieger-Liszkay A (2011) Photoinhibition: molecular mechanisms and physiological significance. Physiol Plant 142:1–5

    CAS  PubMed  Google Scholar 

  • Kilb B, Wietoska H, Godde D (1996) Changes in the expression of photosynthetic genes precede loss of photosynthetic activities and chlorophyll when glucose is supplied to mature spinach leaves. Plant Sci 115:225–235

    CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    CAS  PubMed  Google Scholar 

  • Koh SC, Demmig-Adams B, Adams WW III (2009) Novel patterns of seasonal photosynthetic acclimation, including interspecific differences, in conifers over an altitudinal gradient. Arct Antarct Alp Res 41:317–322

    Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21:234–244

    CAS  PubMed  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313–323

    CAS  Google Scholar 

  • Krapp A, Quick WP, Stitt M (1991) Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186:58–69

    CAS  PubMed  Google Scholar 

  • Krapp A, Hofmann B, Schäfer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ‘sink regulation’ of photosynthesis? Plant J 3:817–828

    CAS  Google Scholar 

  • Krause GH, Gallé A, Virgo A, García M, Bucic P, Jahns P, Winter K (2006) High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.). Plant Biol 8:31–41

    CAS  PubMed  Google Scholar 

  • Kyle DJ, Ohad I, Arntzen CJ (1984) Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 81:4070–4074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kyle DJ, Osmond CB, Arntzen CJ (eds) (1987) Photoinhibition. Topics in Photosynthesis, Volume 9. Elsevier, Amsterdam

    Google Scholar 

  • Layne DR, Flore JA (1993) Physiological responses of Prunus cerasus to whole-plant source manipulation. Leaf gas exchange, chlorophyll fluorescence, water relations and carbohydrate concentrations. Physiol Plant 88:44–51

    CAS  Google Scholar 

  • Logan BA, Barker DH, Adams WW III, Demmig-Adams B (1997) The response of xanthophyll cycle-dependent energy dissipation in Alocasia brisbanensis to sunflecks in a subtropical rainforest. Aust J Plant Physiol 24:27–33

    Google Scholar 

  • Logan BA, Demmig-Adams B, Rosenstiel TN, Adams WW III (1999) Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209:213–220

    CAS  PubMed  Google Scholar 

  • Logan BA, Adams WW III, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    CAS  Google Scholar 

  • Losciale P, Chow WS, Grappadelli LC (2010) Modulating the light environment with the peach ‘asymmetric orchard’: effects on gas exchange performances, photoprotection, and photoinhibition. J Exp Bot 61:1177–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999–1006

    CAS  Google Scholar 

  • Martindale W, Leegood RC (1997) Acclimation of photosynthesis to low temperature in Spinacia oleracea L. 1. Effects of acclimation on CO2 assimilation and carbon partitioning. J Exp Bot 48:1865–1872

    CAS  Google Scholar 

  • Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008) Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant Cell Environ 31:548–561

    CAS  PubMed  Google Scholar 

  • Mondal MH, Brun WA, Brenner ML (1978) Effects of sink removal on photosysnthesis and senescence in leaves of soybean (Glycine max L.) plants. Plant Physiol 61:394–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales F, Belkhodja R, Abadía A, Abadía J (2000) Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63:9–21

    CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed Central  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    CAS  PubMed  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murchie EH, Yang JC, Hubbart S, Horton P (2002) Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J Exp Bot 53:2217–2224

    CAS  PubMed  Google Scholar 

  • Myers DA, Thomas RB, DeLucia EH (1999) Photosynthetic responses of loblolly pine (Pinus taeda) needles to experimental reduction in sink demand. Tree Physiol 19:235–242

    PubMed  Google Scholar 

  • Nakano H, Makino A, Mae T (1995) Effects of panicle removal on the photosynthetic characteristics of the flag leaf of rice plants during the ripening stage. Plant Cell Physiol 36:653–659

    CAS  Google Scholar 

  • Neale PJ (1987) Algal photoinhibition and photosynthesis in the aquatic environment. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 39–65

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    CAS  PubMed  Google Scholar 

  • Ögren E (1994) The significance of photoinhibition for photosynthetic productivity. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 433–447

    Google Scholar 

  • Ögren E, Sjöström M (1990) Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy. Planta 181:560–567

    PubMed  Google Scholar 

  • Oguchi R, Terashima I, Kou JC, Chow WS (2011) Operation of dual mechanisms that both lead to photoinactivation of photosystem II in leaves by visible light. Physiol Plant 142:47–55

    CAS  PubMed  Google Scholar 

  • Oh S, Adams WW III, Demmig-Adams B, Koh SC (2013) Seasonal photoprotective responses in needles of Korean fir (Abies koreana) over an altitudinal gradients on Mount Hala, Jeju Island, Korea. Arct Antarct Alp Res 45:238–248

    Google Scholar 

  • Ohad I, Berg A, Berkowicz SM, Kaplan A, Keren N (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86

    CAS  PubMed  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 1–24

    Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field – quintessential inefficiencies of the light and dark reactions of photosynthesis. J Exp Bot 46:1351–1362

    CAS  Google Scholar 

  • Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ 20:110–116

    CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    CAS  PubMed  Google Scholar 

  • Pearcy RW (1987) Photosynthetic gas exchange responses of Australian tropical forest trees in canopy gap and understory micro-environment. Funct Ecol 1:169–178

    Google Scholar 

  • Pearcy RW, Calkin HW (1983) Carbon dioxide exchange of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia 58:26–32

    Google Scholar 

  • Powles SB, Björkman O (1981) Leaf movement in the shade species Oxalis oregano. II. Role in protection against injury by intense light. Carnegie Inst Wash Yearb 80:63–66

    Google Scholar 

  • Raven JA (1994) The cost of photoinhibition to plant communities. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford, pp 449–464

    Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    CAS  PubMed  Google Scholar 

  • Renaut J, Hoffmann L, Hausman J-F (2005) Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol Plant 125:82–94

    CAS  Google Scholar 

  • Rengifo E, Tezara W, Herrera A (2005) Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flooding. Photosynthetica 43:203–210

    CAS  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    PubMed  Google Scholar 

  • Rivas F, Gravina A, Agusti M (2007) Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiol 27:527–535

    CAS  PubMed  Google Scholar 

  • Roden JS, Ball MC (1996) The effect of elevated [CO2] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits. Plant Physiol 111:909–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roden JS, Egerton JJG, Ball MC (1999) Effect of elevated [CO2] on photosynthesis and growth of snow gum (Eucalyptus pauciflora) seedlings during winter and spring. Aust J Plant Physiol 26:37–46

    Google Scholar 

  • Rodriguez M, Taleisnik E, Lenardon S, Lascano R (2010) Are sunflower chlorotic mottle virus infection symptoms modulated by early increases in leaf sugar concentration? J Plant Physiol 167:1137–1144

    CAS  PubMed  Google Scholar 

  • Rolland R, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 129:S185–S205

    Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    CAS  PubMed  Google Scholar 

  • Stitt M, von Schaewen A, Willmitzer L (1990) “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta 183:40–50

    Google Scholar 

  • Strand Å, Hurry V, Gustafsson P, Gardeström P (1997) Development of Arabidopsis thaliana leaves at low temperature releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614

    CAS  PubMed  Google Scholar 

  • Strand Å, Hurry VM, Henkes S, Huner NPA, Gustafsson P, Gardeström P, Stitt M (1999) Acclimation of Arabidopsis leaves developing at low temperature: increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    CAS  PubMed  Google Scholar 

  • Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376

    Google Scholar 

  • Tyystjärvi E (2013) Photoinhibition of photosystem II. Int Rev Cell Mol Biol 300:243–303

    PubMed  Google Scholar 

  • Valladares R, Allen MT, Pearcy RW (1987) Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111:505–514

    Google Scholar 

  • Urban L, Alphonsout L (2007) Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. Tree Physiol 27:345–352

    CAS  PubMed  Google Scholar 

  • Van Oosten J-J, Besford RT (1996) Acclimation of photosynthesis to elevated CO2 through feedback regulation of gene expression: climate of opinion. Photosynth Res 48:353–365

    PubMed  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    CAS  PubMed  Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B (1996) Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiol Plant 96:567–576

    CAS  Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B (1998) Two forms of sustained xanthophyll cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus. Plant Cell Environ 21:893–903

    Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B (1999) The xanthophyll cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 118:277–287

    Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32:1066–1081

    Google Scholar 

  • Werner C, Correia O (1996) Photoinhibition in cork-oak leaves under stress: influence of bark-stripping on the chlorophyll fluorescence emission in Quercus suber L. Trees 10:288–293

    Google Scholar 

  • Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effect of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant Cell Environ 24:27–40

    CAS  Google Scholar 

  • Wünsche JN, Greer DH, Laing WA, Palmer JW (2005) Physiological and biochemical leaf and tree responses to crop load in apple. Tree Physiol 25:1253–1263

    PubMed  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:639–648

    CAS  Google Scholar 

  • Yamamoto HY (2006) A random walk to and through the xanthophyll cycle. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 1–10

    Google Scholar 

  • Yamamoto HY, Bugos RC, Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis, Volume 8. Kluwer Academic (now Springer), Dordrecht, pp 293–303

    Google Scholar 

  • Zarter CR, Adams WW III, Ebbert V, Cuthbertson D, Adamska I, Demmig-Adams B (2006a) Winter downregulation of intrinsic photosynthetic capacity coupled with upregulation of Elip-like proteins and persistent energy dissipation in a subalpine forest. New Phytol 172:272–282

    CAS  PubMed  Google Scholar 

  • Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW III (2006b) Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytol 172:283–292

    PubMed  Google Scholar 

  • Zarter CR, Adams WW III, Ebbert V, Adamska I, Jansson S, Demmig-Adams B (2006c) Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant Cell Environ 29:869–878

    CAS  PubMed  Google Scholar 

  • Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175

    CAS  PubMed  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of BD-A and WWA was supported by the National Science Foundation (Award Numbers IOS-0841546 and DEB-1022236) and the University of Colorado at Boulder. We also thank Erik Murchie for his suggested improvements to the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Adams III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adams, W.W., Muller, O., Cohu, C.M., Demmig-Adams, B. (2014). Photosystem II Efficiency and Non-Photochemical Fluorescence Quenching in the Context of Source-Sink Balance. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_23

Download citation

Publish with us

Policies and ethics