Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

Much of the research on the thermal dissipation of excess absorbed light, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, has been focused on a major, rapidly induced and rapidly reversible component of fluorescence quenching termed energy-dependent quenching, feedback de-excitation, or qE. A breakthrough in this field came with the discovery of the involvement of the photosystem II subunit S (PsbS) protein, a thylakoid membrane protein required for qE induction and relaxation. In this chapter, we discuss the history of how PsbS was first identified as a photosystem II subunit, the genetic characterization that defined its important role in qE, and the biochemical work describing how PsbS might regulate photosynthetic light harvesting. We emphasize how mutants affecting PsbS (i.e., npq4) have been invaluable tools in defining structural and spectroscopic changes associated with qE, and how these mutants have contributed to our current understanding of the physiological role of the thermal dissipation process accompanied by non-photochemical fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBY:

Berthold-Babcock-Yocum;

Co-IP:

Co-immunoprecipitation;

CP24:

Chlorophyll protein of 24 kDa molecular mass;

CP26:

Chlorophyll protein of 24 kDa molecular mass

CP29:

Chlorophyll protein of 29 kDa molecular mass;

DAD:

Diaminodurene;

DCCD:

Dicyclohexylcarbodiimide;

LHC:

Light-harvesting complex;

NPQ:

Non-photochemical quenching of chlorophyll fluorescence;

PS:

Photosystem;

PsbO:

Photosystem II subunit O;

PsbP:

Photosystem II subunit P;

PsbS:

Photosystem II subunit S;

qE:

Energy-dependent, rapidly reversible component of NPQ, also termed energy-dependent quenching or feedback de-excitation;

QTL:

Quantitative trait locus;

V:

Violaxanthin;

VDE:

Violaxanthin de-epoxidase;

Z:

Zeaxanthin

References

  • Adams W III, Zarter CR, Mueh K et al (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams W, Mattoo A (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 49–64

    Google Scholar 

  • Ahn TK, Avenson TJ, Ballottari M et al (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    CAS  PubMed  Google Scholar 

  • Alboresi A, Gerotto C, Giacometti GM et al (2010) Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci USA 107:11128–11133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aspinall-O’Dea M, Wentworth M, Pascal A et al (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc Natl Acad Sci USA 99:16331–16335

    PubMed Central  PubMed  Google Scholar 

  • Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101:5530–5535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558

    CAS  PubMed  Google Scholar 

  • Avenson TJ, Ahn TK, Niyogi KK, Ballottari M, Bassi R, Fleming GR (2009) Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex. J Biol Chem 284:2830–2835

    CAS  PubMed  Google Scholar 

  • Bergantino E, Segalla A, Brunetta A, Teardo E, Rigoni F, Giacometti GM, Szabò I (2003) Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. Proc Natl Acad Sci USA 100:15265–15270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R (2008) Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J Biol Chem 283:8434–8445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briantais JM, Vernotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    CAS  PubMed  Google Scholar 

  • Caffarri S, Kouril R, Kereïche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crouchman S, Ruban A, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580:2053–2058

    CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1994) Capacity for energy dissipation in the pigment bed in leaves with different xanthophyll cycle pools. Funct Plant Biol 21:575–588

    Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Moeller DL, Logan BA, Adams WW III (1998) Positive correlation between levels of retained zeaxanthin+antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola (Hayata) Merrill. Planta 205:367–374

    CAS  Google Scholar 

  • Demmig-Adams B, Ebbert V, Mellman DL et al (2006) Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiol Plant 127:670–680

    CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Amiard V et al. (2013). Emerging trade-offs – impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. New Phytol 197:720–729.

    Google Scholar 

  • Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277:22750–22758

    CAS  PubMed  Google Scholar 

  • Dreuw A, Fleming GR, Head-Gordon M (2003) Charge-transfer state as a possible signature of a zeaxanthin−chlorophyll dimer in the non-photochemical quenching process in green plants. J Phys Chem B 107:6500–6503

    CAS  Google Scholar 

  • Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 10:233

    PubMed Central  PubMed  Google Scholar 

  • Fichtner K, Quick WP, Schulze E-D, Mooney HA, Rodermel SR, Bogorad L, Stitt M (1993) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS. Planta 190:1–9

    CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    CAS  PubMed  Google Scholar 

  • Frank HA, Bautista JA, Josue JS, Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39:2831–2837

    CAS  PubMed  Google Scholar 

  • Frenkel M, Külheim C, Jänkänpää HJ, Skogström O, Dall’Osto L, Agren J, Bassi R, Moritz T, Moen J, Jansson S (2009) Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC Plant Biol 9:12

    PubMed Central  PubMed  Google Scholar 

  • Funk C, Schröder WP, Green BR, Renger G, Andersson B (1994) The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett 342:261–266

    CAS  PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B, Renger G (1995a) The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270:30141–30147

    CAS  PubMed  Google Scholar 

  • Funk C, Schröder WP, Napiwotzki A, Tjus SE, Renger G, Andersson B (1995b) The PSII-S protein of higher plants: a new type of pigment-binding protein. Biochemistry 34:11133–11141

    CAS  PubMed  Google Scholar 

  • Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2012) Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens. New Phytol 196:763–773

    CAS  PubMed  Google Scholar 

  • Ghanotakis DF, Yocum CF (1986) Purification and properties of an oxygen-evolving reaction center complex from photosystem II membranes: a simple procedure utilizing a non-ionic detergent and elevated ionic strength. FEBS Lett 197:244–248

    CAS  Google Scholar 

  • Ghanotakis DF, Waggoner CM, Bowlby NR, Demetriou DM, Babcock GT, Yocum CF (1987) Comparative structural and catalytic properties of oxygen-evolving photosystem II preparations. Photosynth Res 14:191–199

    CAS  PubMed  Google Scholar 

  • Göhre V, Jones AME, Sklenář J, Robatzek S, Weber AP (2012) Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol Plant Microbe Interact 25:1083–1092

    PubMed  Google Scholar 

  • Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    CAS  PubMed  Google Scholar 

  • Graßes T, Pesaresi P, Schiavon F, Varotto C, Salamini F, Jahns P, Leister D (2002) The role of ΔpH-dependent dissipation of excitation energy in protecting photosystem II against light-induced damage in Arabidopsis thaliana. Plant Physiol Biochem 40:41–49

    Google Scholar 

  • Haripal PK, Raval HK, Raval MK, Rawal RM, Biswal B, Biswal UC (2006) Three-dimensional model of zeaxanthin binding PsbS protein associated with nonphotochemical quenching of excess quanta of light energy absorbed by the photosynthetic apparatus. J Mol Model 12:847–853

    CAS  PubMed  Google Scholar 

  • Hauska GA, Prince RC (1974) Lipophilicity and catalysis of photophosphorylation artificial proton translocation by lipophilic, quinoid hydrogen carriers in chloroplasts and liposomes. FEBS Lett 41:35–39

    CAS  PubMed  Google Scholar 

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Havaux M, Bonfils JP, Lütz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Havaux M, Dall’Osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:1621–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281–8289

    CAS  PubMed  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    CAS  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    CAS  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    CAS  PubMed  Google Scholar 

  • Hubbart S, Ajigboye OO, Horton P, Murchie EH (2012) The photoprotective protein PsbS exerts control over CO2 assimilation rate in fluctuating light in rice. Plant J 71:402–412

    CAS  PubMed  Google Scholar 

  • Huner NA, Ivanov A, Sane P, Pocock T, Król M, Balseris A, Rosso D, Savitch LV, Hurry VM, Öquist G (2006) Photoprotection of photosystem II: reaction center quenching versus antenna quenching. In: Demmig-Adams B, Adams W, Mattoo A (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 155–173

    Google Scholar 

  • Ishida S, Morita K, Kishine M, Takabayashi A, Murakami R, Takeda S, Shimamoto K, Sato F, Endo T (2011) Allocation of absorbed light energy in PSII to thermal dissipations in the presence or absence of PsbS subunits of rice. Plant Cell Physiol 52:1822–1831

    CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    CAS  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    PubMed  Google Scholar 

  • Johansson Jänkänpää H, Frenkel M, Zulfugarov I, Reichelt M, Krieger-Liszkay A, Mishra Y, Gershenzon J, Moen J, Lee CH, Jansson S (2013) Non-photochemical quenching capacity in Arabidopsis thaliana affects herbivore behaviour. PLoS One 8:e53232. doi:10.1371/journal.pone.0053232

    PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 284:23592–23601

    Google Scholar 

  • Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289

    CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2011) Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ʿpH. J Biol Chem 286:19973–19981

    Google Scholar 

  • Johnson MP, Davison PA, Ruban AV, Horton P (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:262–266

    CAS  PubMed  Google Scholar 

  • Johnson MP, Brain APR, Ruban AV (2011a) Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation. Plant Signal Behav 6:1386–1390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011b) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Zia A, Ruban AV (2012) Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235:193–204

    CAS  PubMed  Google Scholar 

  • Jung H-S, Niyogi KK (2009) Quantitative genetic analysis of thermal dissipation in Arabidopsis. Plant Physiol 150:977–986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci USA 99:12789–12794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasajima I, Ebana K, Yamamoto T, Takahara K, Yano M, Kawai-Yamada M, Uchimiya H (2011) Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc Natl Acad Sci USA 108:13835–13840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kereïche S, Kiss AZ, Kouril R, Boekema EJ, Horton P (2010) The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett 584:759–764

    PubMed  Google Scholar 

  • Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR, Vlahakis S, Yocum CF, Pichersky E (1992) Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II. FEBS Lett 314:67–71

    CAS  PubMed  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978

    CAS  PubMed  Google Scholar 

  • Kovács L, Damkjaer J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120

    PubMed Central  PubMed  Google Scholar 

  • Koziol AG, Borza T, Ishida K, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b- containing organisms. Plant Physiol 143:1802–1816

    Google Scholar 

  • Krah NM, Logan BA (2010) Loss of psbS expression reduces vegetative growth, reproductive output, and light-limited, but not light-saturated, photosynthesis in Arabidopsis thaliana (Brassicaceae) grown in temperate light environments. Am J Bot 97:644–649

    CAS  PubMed  Google Scholar 

  • Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93

    PubMed  Google Scholar 

  • Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR (2010) Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. Plant Physiol 152:1611–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    CAS  PubMed  Google Scholar 

  • Li X-P, Gilmore AM, Niyogi KK (2002a) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 277:33590–33597

    CAS  PubMed  Google Scholar 

  • Li X-P, Müller-Moulé P, Gilmore AM, Niyogi KK (2002b) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X-P, Phippard A, Pasari J, Niyogi KK (2002c) Structure–function analysis of photosystem II subunit S (PsbS) in vivo. Funct Plant Biol 29:1131–1139

    Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    CAS  PubMed  Google Scholar 

  • Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao P-N, Bode S, Wilk L, Hafi N, Walla PJ (2010a) Correlation of electronic carotenoid–chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants. Chem Phys 373:50–55

    CAS  Google Scholar 

  • Liao P-N, Holleboom C-P, Wilk L, Kühlbrandt W, Walla PJ (2010b) Correlation of Car S1 → Chl with Chl → Car S1 energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655

    CAS  PubMed  Google Scholar 

  • Liao P-N, Pillai S, Kloz M, Gust D, Moore AL, Moore TA, Kennis JTM, van Grondelle R, Walla PJ (2012) On the role of excitonic interactions in carotenoid–phthalocyanine dyads and implications for photosynthetic regulation. Photosynth Res 111:237–243

    CAS  PubMed  Google Scholar 

  • Ljungberg U, Åkerlung H-E, Larsson C, Andersson B (1984) Identification of polypeptides associated with the 23 and 33 kDa proteins of photosynthetic oxygen evolution. Biochim Biophys Acta 767:145–152

    CAS  Google Scholar 

  • Ljungberg U, Åkerlund H-E, Andersson B (1986) Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2. Eur J Biochem 158:477–482

    CAS  PubMed  Google Scholar 

  • Logan BA, Terry SG, Niyogi KK (2008) Arabidopsis genotypes with differing levels of psbS expression differ in photosystem II quantum yield, xanthophyll cycle pool size, and aboveground growth. Int J Plant Sci 169:597–604

    CAS  Google Scholar 

  • Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    CAS  PubMed  Google Scholar 

  • Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12:6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves–relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46:629–637

    Google Scholar 

  • Müller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chemphyschem 11:1289–1296

    PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nield J, Funk C, Barber J (2000) Supermolecular structure of photosystem II and location of the PsbS protein. Philos Trans R Soc Lond B Biol Sci 355:1337–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359

    CAS  PubMed  Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens TG (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific, Oxford, pp 95–109

    Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    CAS  PubMed  Google Scholar 

  • Pesaresi P, Sandonà D, Giuffra E, Bassi R (1997) A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the photosystem II subunit CP29. FEBS Lett 402:151–156

    CAS  PubMed  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    CAS  PubMed  Google Scholar 

  • Peterson RB, Havir EA (2000) A nonphotochemical-quenching-deficient mutant of Arabidopsis thaliana possessing normal pigment composition and xanthophyll-cycle activity. Planta 210:205–214

    CAS  PubMed  Google Scholar 

  • Phillip D, Ruban AV, Horton P, Asato A, Young AJ (1996) Quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II: a systematic study of the effect of carotenoid structure. Proc Natl Acad Sci USA 93:1492–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roach T, Krieger-Liszkay A (2012) The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochim Biophys Acta 1817:2158–2165

    CAS  PubMed  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I. Spectroscopic analysis of isolated light-harvesting complexes. Biochim Biophys Acta 1102:30–38

    CAS  Google Scholar 

  • Ruban AV, Rees D, Pascal AA, Horton P (1992a) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. II. The relationship between LHCII aggregation in vitro and qE in isolated thylakoids. Biochim Biophys Acta 1102:39–44

    CAS  Google Scholar 

  • Ruban AV, Walters RG, Horton P (1992b) The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes Inhibition of ΔpH-dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide. FEBS Lett 309:175–179

    CAS  PubMed  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves (Evidence for changes in the state of the light-harvesting system of photosystem II in vivo). Plant Physiol 102:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    CAS  PubMed  Google Scholar 

  • Schultes NP, Peterson RB (2007) Phylogeny-directed structural analysis of the Arabidopsis PsbS protein. Biochem Biophys Res Commun 355:464–470

    CAS  PubMed  Google Scholar 

  • Takahashi S, Milward SE, Fan D-Y, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takizawa K, Kanazawa A, Kramer DM (2008) Depletion of stromal Pi induces high “energy-dependent” antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ 31:235–243

    CAS  PubMed  Google Scholar 

  • Teardo E, de Laureto PP, Bergantino E, Dalla Vecchia F, Rigoni F, Szabò I, Giacometti GM (2007) Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim Biophys Acta 1767:703–711

    CAS  PubMed  Google Scholar 

  • Walters R, Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynth Res 36:119–139

    CAS  PubMed  Google Scholar 

  • Walters RG, Ruban AV, Horton P (1994) Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur J Biochem 226:1063–1069

    CAS  PubMed  Google Scholar 

  • Wedel N, Klein R, Ljungberg U, Andersson B, Herrmann RG (1992) The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. FEBS Lett 314:61–66

    CAS  PubMed  Google Scholar 

  • Wilk L, Grunwald M, Liao PN, Walla PJ, Kühlbrandt W (2013) Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc Natl Acad Sci USA 110:5452–5456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wraight CA, Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17:319–327

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Bugos R, David Hieber A (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank H, Young A, Britton G, Cogdell R (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Springer, Dordrecht, pp 293–303

    Google Scholar 

  • Zulfugarov IS, Ham O-K, Mishra SR, Kim JY, Nath K, Koo HY, Kim HS, Moon YH, An G, Lee CH (2007) Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. Biochim Biophys Acta 1767:773–780

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, FWP number 449B. K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna K. Niyogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brooks, M.D., Jansson, S., Niyogi, K.K. (2014). PsbS-Dependent Non-Photochemical Quenching. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_13

Download citation

Publish with us

Policies and ethics