Skip to main content

Introduction: Soils and Their Promotion of Plant Growth

  • Chapter
  • First Online:
Interactions in Soil: Promoting Plant Growth

Part of the book series: Biodiversity, Community and Ecosystems ((BECO,volume 1))

Abstract

Soil is a complex milieu of physical and biological entities that regulates the availability of nutrients for plant growth. The interactions between the elements of the soil biota and the plants during this process are complex and often rely on feedbacks between the plants and the great diversity of soil organisms that function to regulate processes to support plant growth. The rhizosphere and its mycorrhizal component are important parts of the connection between the plant and soil through its roots. This zone is a ‘hot-spot’ of microbial activity and trophic interactions with other soil organisms. It is here that growth of the plant root is influenced by nutrient availability, induction of root growth stimulating auxins, the interaction with plant pathogens and herbivores. Ecosystem engineers in the form of earthworms and other burrowing fauna are important in altering both the physical structure of soil and rates of decomposition of organic residues. A little researched component of soil is viruses. Their interaction with microbial and faunal communities is introduced here. Many of the soil processes influencing plant growth and the diversity of soil organisms is influenced by human activities ranging from agricultural and forestry practices through urbanization to the influence of pollution from industrial processes. To help us with the understanding of the interactions between biodiversity and function, new molecular tools involving metagenomics and transcriptomics are evolving, and are discussed here as an emerging suite of tools that can be applied to soil ecology. The chapter introduces the detail to come in subsequent chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47

    Google Scholar 

  • Adl S, Coleman DC, Read F (2006) Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric Ecosyst Environ 114:323–334

    Google Scholar 

  • Ahmadzadeh M, Tehrani AS (2009) Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biol Control 48:101–107

    Google Scholar 

  • Ali JG, Alborn HT, Campos-Herrera R, Kaplan F, Duncan LW, Rodriguez-Saona C, Koppenhöfer AM, Stelinski LL (2012) Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS One 7:1–8

    CAS  Google Scholar 

  • Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funct Plant Biol 37:499–512

    Google Scholar 

  • Andrews JH, Kinkel LL, Berbee FM, Nordheim EV (1987) Fungi, leaves and the theory of island biogeography. Microb Ecol 14:277–290

    CAS  Google Scholar 

  • Appiha AA, Jennings P, Turner JA (2004) Phytophthora ramorum: one pathogen and many diseases, an emerging treat to forest ecosystems and ornamental plant life. Mycologist 18:145–150

    Google Scholar 

  • Åström J, Bengtsson J (2011) Patch size matters more than dispersal distance in a mainland- island metacommunity. Oecologia 167:747–757

    Google Scholar 

  • Azcón-Aguilar C, Jaimez-Vega MC, Clavet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 187–197

    Google Scholar 

  • Babikova Z, Gilbert L, Brucs TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighboring plants of aphid attack. Ecol Lett. doi:10.1111/ele.12115

    Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Bianciotti V, Perotto S, Ruiz-Lozano JM, Bonfante P (2002) Arbuscular mycorrhizal fungi and soil bacteria: from cellular investigations to biotechnological perspectives. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 19–31

    Google Scholar 

  • Bityutskii NP, Maiorov EI, Orlova NE (2012) The priming effect induced by earthworm mucus on mineralization and humification of plant residues. Eur J Soil Biol 50:1–6

    CAS  Google Scholar 

  • Bohlen PJ, Groffman PM, Fahey TJ, Fisk MC, Suárez E, Pelletier DM, Fahey RT (2004a) Ecosystem consequences of exotic earthworm invasion of north temperate forests. Ecosystems 7:1–12

    Google Scholar 

  • Bohlen PJ, Pelletier DM, Groffman PM, Fahey TJ, Fisk MC (2004b) Influence of earthworm invasion on redistribution and retention of soil carbon and nitrogen in northern temperate forests. Ecosystems 7:13–27

    CAS  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    CAS  Google Scholar 

  • Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–1019

    Google Scholar 

  • Brownbridge M, Reay SD, Nelson TL, Glare TR (2012) Persistence of Beauvaria bassiana (Ascomycota; Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biol Control 63:194–200

    Google Scholar 

  • Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological functional alterations in three terrestrial taxa: a review. Environ Pollut 158:2793–2808

    CAS  Google Scholar 

  • Brussard L, deRuter PC, Brown GC (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Google Scholar 

  • Campos-Seriano L, García-Martínez J, san Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Google Scholar 

  • Carminati A, Vetterlein D (2012) Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Ann Bot 262:1–14

    Google Scholar 

  • Chen W, Hoitink HAJ, Madden LV (1988) Microbial activity and biomass in container media for predicting suppressiveness to damping-off caused by Pythium ultimum. Phytopathology 78:1447–1450

    Google Scholar 

  • Clarholm M (1994) The microbial loop in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 221–230

    Google Scholar 

  • Clematis F, Minuto A, Gullino ML, Garibaldi A (2009) Suppressiveness to Fusarium oxysporum f. sp. radicis lycopersici in re-used perlie and perlite-peat substrates in soilless tomatoes. Biol Control 48:108–114

    Google Scholar 

  • Cluzeau D, Guernion M, Chassod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateielle T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pèrés G (2012) Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49:63–72

    Google Scholar 

  • Coleman DC (1985) Through a ped darkly – an ecological assessment of root soil-microbial- faunal interactions. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in the soil: plants, microbes and animals, vol 4, British Ecological Society special publication. Blackwells, Oxford, pp 1–12

    Google Scholar 

  • Coleman DC (1998) Ecosystem health: an overview. In: Wang PH (ed) Soil chemistry and ecosystem health, Soil Science Society of America special publication no 52. Wisconsin, Madison, pp 1–20

    Google Scholar 

  • Coleman DC (2011) Understanding soil processes: one of the last frontiers in biological and ecological research. Aust Plant Pathol 40:207–214

    Google Scholar 

  • Cox GW, Allen DW (1987) Soil translocation by pocket gophers in a Mima moundfield. Oecologia 72:207–210

    Google Scholar 

  • Cravotto G, Di Carlo S, Binello A, Mantegna S, Girlanda M, Lazzari A (2008) Integrated sonochemical and microbial treatment for decontamination of nonylphenol-polluted water. Water Air Soil Pollut 187:353–359

    CAS  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Google Scholar 

  • Crow SE, Filly TR, McCormick M, Szlávez K, Stott DE, Gamblin D, Conyers G (2009) Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry 92:61–82

    Google Scholar 

  • Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, Crews TE (2010) Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric Ecosyst Environ 137:13–24

    Google Scholar 

  • Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissnet-Tachet L, Marmeisse R (2012) Metatranscriptomics reveals the diversity of genes expressed by Eukaryotes in forest soils. PLoS One 7(1):e28967. doi:10.1371/journal/pone.0028967

    CAS  Google Scholar 

  • de Bertoldi M (2010) Production and utilization of suppressive compost: environmental, food and health benefits. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work: from water to resources. Springer, Berlin/Heidelberg, pp 153–170

    Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    CAS  Google Scholar 

  • Dighton J (2009a) Mycorrhizae. In: Schaechter M (ed) Encyclopedia of Microbiology. Elsevier, Oxford, pp 153–162

    Google Scholar 

  • Dighton J (2009b) Evaluation of mycorrhizal symbioses as defense in extreme environments. In: White JF, Torres M (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, 199

    Google Scholar 

  • Dighton J, Jansen AE (1991) Atmospheric pollutants and ectomycorrhizas: more questions than answers? Environ Pollut 73:179–204

    CAS  Google Scholar 

  • Dighton J, Tuininga AR, Gray DM, Huskins RE, Belton T (2004) Impacts of atmospheric deposition on New Jersey pine barrens forest soils and communities of ectomycorrhizae. For Ecol Manage 201:131–144

    Google Scholar 

  • Dighton J, Tugay T, Zhdanova NN (2008) Interactions of fungi and radionuclides in soil. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin/Heidelberg, pp 333–355

    Google Scholar 

  • Dimka CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Google Scholar 

  • Douds DD Jr, Nagahashi G, Hepperly PR (2010) On-farm production of inoculums of indigenous arbuscular mycorrhizal fungi and assessment of diluents of compost for inoculums production. Bioresour Technol 101:2326–2330

    CAS  Google Scholar 

  • Duckworth OW, Bargar JR, Sposito G (2009) Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals 22:605–613

    CAS  Google Scholar 

  • Ebssa L, Koppenhöfer AM (2012) Entomopathogenic nematodes for black cutworm management: effect of instar, nematode species, and nematode production method. Pest Manage Sci 68:947–957

    CAS  Google Scholar 

  • Ebssa L, Fuzy EM, Bickerton MW, Koppenhöfer AM (2012) Host density effects on efficacy of entomopathogenic nematodes against white grub (Coleoptera: Scarabaeidae) species. Biocontrol Sci Technol 22:117–123

    Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    CAS  Google Scholar 

  • Eijsackers H (2001) A future for soil ecology? Connecting the system levels: moving from genomes to ecosystems. Opening Lecture to the XII ICSZ “Biodiversity of soil organisms and ecosystem functioning”. Biol Fertile Soils 37:213–220

    Google Scholar 

  • Estaún V, Camprubí A, Joner EJ (2002) Selecting arbuscular mycorrhizal fungi for field application. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 249–259

    Google Scholar 

  • Ettema H, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Google Scholar 

  • Felici C, Vettori L, Giraldi E, Forino LMC, Toffani A, Tagliasacchi AM, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasiliense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270

    Google Scholar 

  • Fierer N, Breitbart M, Nultan J et al (2011) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, Archaea, fungi and viruses in soil. Appl Environ Microbiol 73:7059–7066

    Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhizal helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol 168:4–8

    CAS  Google Scholar 

  • Frey-Klett P, Chavette M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Google Scholar 

  • Frouz J, Pižl V, Cienciala E, Kalěik J (2009) Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 94:111–121

    CAS  Google Scholar 

  • Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • George SJ, Harper RJ, Hobbs RJ, Tibbett M (2012) A sustainable agricultural landscape for Australia: a review of interlacing carbon sequestration, biodiversity and salinity management in agroforestry systems. Agric Ecosyst Environ 163:28–36

    Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Google Scholar 

  • Gray SN (1998) Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem Soc Trans 26:660–670

    Google Scholar 

  • Groffman PM, Bohlen PJ, Fisk MC, Fahey TJ (2004) Exotic earthworm invasion and microbial biomass in temperate forest soil. Ecosystems 7:45–54

    CAS  Google Scholar 

  • Guéi AM, Baidai Y, Tondoh JE, Huising J (2012) Functional attributes: compacting vs. decompacting earthworms and influence on soil structure. Curr Zool 58:556–565

    Google Scholar 

  • Gutiérrez JL, Jones CG (2006) Physical ecosystem engineers as agents of biogeochemical heterogeneity. BioScience 56:227–236

    Google Scholar 

  • Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9:131–135

    CAS  Google Scholar 

  • Harper JL (1990) Pests, pathogens and plant communities: an introduction. In: Burdon JJ, Leather SR (eds) Pest pathogens and plant communities. Blackwell, Oxford, pp 3–13

    Google Scholar 

  • Hartmann A, Schmidt M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    CAS  Google Scholar 

  • Havlicek E (2012) Soil biodiversity and bioindication: from complex thinking to simple acting. Eur J Soil Biol 49:80–84

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Helmisaari H-S, Hanssen KH, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, Tamminen P, Tveite B (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impacts on tree growth. For Ecol Manage 263:31–38

    Google Scholar 

  • Hetrick BAD, Bloom J (1986) The influence of host plant on production and colonization ability of vesicular–arbuscular mycorrhizal spores. Mycologia 78:32–36

    Google Scholar 

  • Howard DM, Howard PJA, Howard DC (1995) Markov model projection of soil organic carbon stores following land use change. J Environ Manage 45:287–303

    Google Scholar 

  • Hrynkiewicz K, Ciesielska A, Haug I, Baum C (2010) Ectomycorrhiza formation and willow growth promotion as affected by associated bacteria: role of microbial metabolites and use of C sources. Biol Fertil Soils 46:139–150

    CAS  Google Scholar 

  • Ingham EI (2005) The compost tea brewing manual, 5th edn. Soil Foodweb Inc, Corvallis, 79 pp

    Google Scholar 

  • Itoo ZA, Reshi ZA (2013) The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. Bot Rev 79:371–400

    Google Scholar 

  • Jansen AE, Dighton J (1990) Effects of air pollutants on ectomycorhizas. CEC air pollution research report 30, Brussels, Belgium, 30 pp

    Google Scholar 

  • Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38

    CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Kanyuka K, Ward E, Adams MJ (2003) Polymyxa graminis and the cereal virus it transmits: a research challenge. Mol Plant Pathol 4:393–406

    CAS  Google Scholar 

  • Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Leiss A, Litchman E (2005) Towards a stoichiometric framework for evolutionary biology. Oikos 109:6–17

    Google Scholar 

  • Kellner H, Zak DR, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5:e10971

    Google Scholar 

  • Khan MS, Zaida A, Wani PA, Ahmed M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria: current status. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Heidelberg, pp 105–132

    Google Scholar 

  • Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76

    Google Scholar 

  • Krause MS, Madeen LV, Hoitink HAJ (2001) Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of Poinsettia. Phytopathology 91:1116–1123

    CAS  Google Scholar 

  • Kremer RJ, Li J (2003) Developing weed-suppressive soils through improved soil quality management. Soil Tillage Res 72:193–202

    Google Scholar 

  • Kreuzer K, Bonkowski M, Langel R, Scheu S (2004) Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biol Biochem 36:2005–2011

    CAS  Google Scholar 

  • Krumins J, Dighton J, Gray D, Franklin RB, Morin P, Roberts MS (2009) Soil microbial community response to nitrogen enrichment in two scrub oak forests. For Ecol Manage 258:1383–1390

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J–P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Google Scholar 

  • LeBayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorus in organic substrates. Soil Biol Biochem 38:235–246

    CAS  Google Scholar 

  • Lee K, Dighton J (2013) Advancement of functional genomics of a model species of Neurospora and its use for ecological genomics of soil fungi. In: Horwitz BA et al (eds) Genomics of soil- and plant-associated fungi. Springer, Berlin/Heidelberg, pp 29–44

    Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential for arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 175–186

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Google Scholar 

  • Lombard N, Prestart E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbial Ecol 78:31–49

    CAS  Google Scholar 

  • Loranger-Merciris G, Cabidoche Y-M, Deloné B, Quénéhervé P, Ozier-Lafontaine H (2012) How earthworm activities affect banana plant response to nematodes parasitism. Appl Soil Ecol 52:1–8

    Google Scholar 

  • MacArthur RH (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Machón P, Santamaría O, Pajares JA, Alves-Santos FM, Diez JJ (2006) Influence of the ectomycorrhizal fungus Laccria laccata on pre-emergence, post-emergence and late damping-off by Fusarium moniliforme and F. oxysporum on Scots pine seedlings. Symbiosis 42:153–160

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis: model and research methods. Soil Biol Biochem 43:883–894

    CAS  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizospheric bacterial communities to induce suppressive soils. J Nematol 39:213–220

    Google Scholar 

  • Merilä P, Mustajärvi K, Helmisaari H-S, Lindroos A-J, Nieminen TM, Nöjd P, Rautio P, Salemaa M, Ukonmaanaho L (2013) Above- and below-ground N stocks in coniferous boreal forests in Finland: implications for sustainability of more intensive biomass utilization. For Ecol Manage doi:10.1016/j.foreco.2013.06.029

  • Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregates. Soil Biol Biochem 22:579–584

    Google Scholar 

  • Navarro-Campos C, Pekas A, Moraza ML, Aguillar A, Garcia-Maria F (2012) Soil-dwelling predatory mites in citrus: their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera; Thripidae). Biol Control 63:201–209

    Google Scholar 

  • Nehr DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol 48:371–394

    Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Google Scholar 

  • Newman EI, Eason WR, Eissenstat DM, Ramos MIRF (1992) Interactions between plants: the role of mycorrhizae. Mycorrhiza 1:47–53

    Google Scholar 

  • Nota B, Bosse M, Ylstra B, van Straalen NM, Roelefs D (2009) Transcriptomics reveals extensive inducible biotransformation in the soil dwelling invertebrate Folsomia candida exposed to phenanthrene. BMC Genomics 10:236–239

    Google Scholar 

  • Nota B, van Straalen NM, Ylstra B, Roelefs D (2010) Gene expression microarray analysis of heat stress in the soil invertebrate Folsomia candida. Insect Mol Biol 19:315–322

    CAS  Google Scholar 

  • Oberle- Kilic J, Dighton J, Arbuckle-Keil G (2013) Atomic force microscopy and micro-ATR- FT-IR imaging reveals fungal enzyme activity at the hyphal scale of resolution. Mycology 4:1–10

    Google Scholar 

  • Parvage MM, Ulén B, Ereiksson J, Strock J, Kirchmann H (2013) Phosphorus availability in soils amended with wheat residue char. Biol Fertil Soils 49:245–250

    Google Scholar 

  • Pedersen CT, Sylvia DM (1996) Mycorrhiza: ecological implications of plant interactions. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Academic, Dordrecht, pp 195–222

    Google Scholar 

  • Pfabel C, Eckhardt K-U, Baum C, Struck C, Frey P, Weih M (2012) Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa x deltoids). Tree Physiol 32:1357–1364

    CAS  Google Scholar 

  • Piron D, Pérès G, Hallaire V, Cluzeau D (2012) Morphological description of soil structure patterns produced by earthworm bioturbation at the profile scale. Eur J Soil Biol 50:83–90

    Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 86:31–40

    Google Scholar 

  • Ponge J-F (1990) Ecological study of a forest humus by observing a small volume. I. Penetration of pine litter by mycorrhizal fungi. Eur J For Pathol 20:290–303

    Google Scholar 

  • Ponge J-F (2005) Emergent properties from organisms to ecosystems: towards a realistic approach. Biol Rev 80:403–411

    Google Scholar 

  • Pozo MJ, Slezack-Deschaumes S, Dumas-Gaudot E, Gianinazzi S, Azcón-Aguilar C (2002) Plant defense response induced by arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 103–111

    Google Scholar 

  • Preisser EL (2003) Field evidence for a rapidly cascading underground food web. Ecology 84:869–874

    Google Scholar 

  • Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, Anke H, van Groenstijn JW, de Bont JAM (2001a) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484

    Google Scholar 

  • Prenafeta-Boldú FX, Luykx DMAM, Vervoort J, de Bont JAM (2001b) Fungal metabolism of toluene: monitoring of fluorinated analogs by 19F nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67:1030–1034

    Google Scholar 

  • Preston S, Griffiths BS, Young IM (1999) Links between substrate additions, native microbes, and the structural complexity and stability of soils. Soil Biol Biochem 31:1541–1547

    CAS  Google Scholar 

  • Radwan S (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian gulf region. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin/Heidelberg, pp 275–298

    Google Scholar 

  • Rantalainen M–L, Haimi J, Setälä H (2004) Testing the usefulness of habitat corridors in mitigating the negative effects of fragmentation: the soil faunal community as a model system. Appl Soil Ecol 25:267–274

    Google Scholar 

  • Rantalainen M–L, Fritze H, Haimi J, Pennanen T, Setälä H (2005) Colonization of newly established habitats by soil decomposer organisms: the effect of habitat corridors in relation to colonization distance and habitat size. Appl Soil Ecol 28:67–77

    Google Scholar 

  • Rantalainen M–L, Haimi J, Fritze H, Setälä H (2006) Effects of small-scale habitat fragmentation, habitat corridors and mainland dispersal on soil decomposer organisms. Appl Soil Ecol 34:152–159

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Remánek M (2000) Plant invasions – the role of mutualisms. Biol Rev 75:65–93

    CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    CAS  Google Scholar 

  • Sánchez-Moreno S, Ferris H (2007) Suppressive service of the soil food web: effects of environmental management. Agric Ecosyst Environ 119:75–87

    Google Scholar 

  • Scheu S (1987a) The role of substrate feeding earthworms (Lumbricidae) for bioturbation in a beechwood soil. Oecologia 72:192–196

    Google Scholar 

  • Scheu S (1987b) The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia 72:197–201

    Google Scholar 

  • Schneider A-K, Schröder B (2012) Perspectives in modelling earthworm dynamics and their feedbacks with abiotic soil properties. Appl Soil Ecol 58:29–36

    Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. App. Environ Microbiol 43:1256–1261

    Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    CAS  Google Scholar 

  • Sessitsch A, Puschenreiter M (2008) Endophytes and rhizosphere bacteria of plants growing in heavy metal-containing soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin/Heidelberg, pp 317–332

    Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997a) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 338:579–582

    Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997b) Effects of soil trenching on occurrence of ectomycorrhizas of Pseudotsuga menziesii seedlings grown immature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136:327–340

    Google Scholar 

  • Singh UB, Sahu A, Singh RK, Singh DP, Meena KK, Srivastava JS, Renu Manna MC (2012) Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminicola and Rhizoctonia solani in rice (Oryza sativa L.). Biol Control 60:262–270

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Suárez ER, Pelletier DM, Fahey TJ, Groffman PM, Bohlen PJ, Fisk MC (2004) Effects of exotic earthworms on soil phosphorus cycling in two broadleaf temperate forests. Ecosystems 7:28–44

    Google Scholar 

  • Sundramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. Caused by Fusarium solani. Biol Control 60:59–67

    Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2011) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific, Oxford

    Google Scholar 

  • Sylvan ZA, Wall DH (2011) Linking soil biodiversity and vegetation: implications for a changing planet. Am J Bot 98:517–527

    Google Scholar 

  • Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi 18-12 enzymes in nematode egg parasitism. Biol Control 63:121–128

    Google Scholar 

  • Termorshuizen AJ, Schaffers AP (1987) Occurrence of carpophores of ectomycorrhizal fungi in selected stands of Pinus sylvestris L. in the Netherlands in relation to stand vitality and air pollution. Plant Soil 104:209–217

    CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soil. J Soil Sci 33:141–163

    CAS  Google Scholar 

  • Turneau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 137–149

    Google Scholar 

  • Uphoff N, Ball AS, Fernades E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sangina N, Thies J (2006) Biological approaches to sustainable soil systems. CRC Taylor & Francis, Boca Raton, 764 pp

    Google Scholar 

  • van der Putten W, Anderson JM, Bardgett RD, Behan-Pelletier V, Bignell DE, Brown GG, Brown VK, Brussard L, Hunt HW, Ineson P, Jones TH, Lavelle P, Paul EA, St John M, Wardle DA, Wojtowicz T, Wall DH (2004) The sustainable delivery goods and services provided by soil biota. In: Wall DH (ed) Sustaining biodiversity and ecosystem services in soils and sediments, SCOPE 64. Island Press, Washington, DC, pp 15–43

    Google Scholar 

  • van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Google Scholar 

  • van Elsas JD, Costa R, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel TM, van Overbeek L (2008) The metagenomics of disease suppressive soils – experiences from the METACONTROL project. Trends Biotechnol 26:591–601

    Google Scholar 

  • van Straalen NM, Løkke H (1997) Ecological risk assessment of contaminants in soil. Chapman Hall, London, 333 pp

    Google Scholar 

  • Verchot-Lubicz J (2003) Soilborne viruses: advances in virus movement, virus induced gene silencing, and engineered resistance. Physiol Mol Plant Physiol 62:55–63

    CAS  Google Scholar 

  • Villarreal D, Clark KL, Branch LC, Hierro JL, Machicote M (2008) Alteration of ecosystem structure by a burrowing herbivore, the plains vizcacha (Lagostomus maximus). J Mamol 89:700–711

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  Google Scholar 

  • Whitelaw MA, Hardena TJ, Helyar KR (1999) Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    CAS  Google Scholar 

  • Wingfield MJ, Slippers B, Roux J, Wingfield BD (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere. BioScience 51:134–140

    Google Scholar 

  • Wolters V (2001) Biodiversity of soil animals and its function. Eur J Soil Biol 37:221–227

    Google Scholar 

  • Yadav SK, Singla-Preek SL, Pareek A (2010) Transcriptome analysis. In: Varma A, Oelmüller R (eds) Soil biology. Springer, Berlin, pp 111–131

    Google Scholar 

  • Yan S, Singh AN, Fu S, Liao C, Wang S, Li Y, Cui Y, Hu L (2012) A soil faunal index for assessing soil quality. Soil Biol Biochem 47:158–165

    CAS  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil microbial complex. Science 304:1634–1637

    CAS  Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control 63:87–97

    Google Scholar 

  • Yvan C, Samartino S, Cadoux S, Bouchant P, Richard G, Boizard H (2012) Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biol Biochem 55:93–103

    CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Michel K, Pfeffer M (2011) Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen. Plant Soil 343:37–50

    CAS  Google Scholar 

  • Zuccaro A, Lahrmann U, Güldener U et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PloS Pathog 7:e1002290. doi:10.1371/journal.ppat.1002290

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dighton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dighton, J. (2014). Introduction: Soils and Their Promotion of Plant Growth. In: Dighton, J., Krumins, J. (eds) Interactions in Soil: Promoting Plant Growth. Biodiversity, Community and Ecosystems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8890-8_1

Download citation

Publish with us

Policies and ethics