Skip to main content

Molecular Dynamics Studies of Graphite Exfoliation Using Supercritical CO2

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 16))

Abstract

Molecular dynamics simulations are used to investigate the microscopic mechanisms of graphite exfoliation using CO2 at supercritical conditions. Two approaches are used: simulations in the canonical ensemble are done by keeping the atoms in the graphite structure fixed but increasing the interlayer separations above their normal value. This procedure allows us to determine the interlayer separation at which the CO2 molecules may be able to intercalate graphite at near and supercritical pressures and temperatures, and to evaluate self-diffusion coefficients at those conditions. In the second approach, the isothermal-isobaric ensemble is utilized allowing graphite to relax, to observe how the exfoliation process may take place at the various pressures and temperatures near and above the CO2 critical point. Analyses of the simulation trajectories reveal that the exfoliation process takes place at increasing rates as the pressure increases at constant temperature, with intercalation of CO2 molecules causing bending and then separation of graphene layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803

    Google Scholar 

  2. Luque A, Marti A, Stanley C (2012) Understanding intermediate-band solar cells. Nat Photonics 6:146–152

    Google Scholar 

  3. Ariga K, Ji QM, McShane MJ, Lvov YM, Vinu A, Hill JP (2012) Inorganic nanoarchitectonics for biological applications. Chem Mater 24:728–737

    Google Scholar 

  4. Randall CL, Gultepe E, Gracias DH (2012) Self-folding devices and materials for biomedical applications. Trends Biotechnol 30:138–146

    Article  Google Scholar 

  5. Mlinar V (2012) Role of theory in the design of semiconducting nanostructures. J Mater Chem 22:1724–1732

    Article  Google Scholar 

  6. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Google Scholar 

  7. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Google Scholar 

  8. Avouris P, Martel R, Derycke V, Appenzeller J (2002) Carbon nanotube transistors and logic circuits. Physica B 323:6–14

    Google Scholar 

  9. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22:767–784

    Google Scholar 

  10. Bernholc J, Brenner D, Nardelli MB, Meunier V, Roland C (2002) Mechanical and electrical properties of nanotubes. Ann Rev Mater Res 32:347–375

    Google Scholar 

  11. Collins PG, Arnold MS, Avouris P: (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Google Scholar 

  12. Dresselhaus MS, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Book  Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  Google Scholar 

  15. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Google Scholar 

  16. Novoselov KS (2011) Graphene: materials in the flatland. Int J Mod Phys B 25:4081–4106

    Article  Google Scholar 

  17. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  18. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Google Scholar 

  19. Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V (2013) The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv Funct Mater. doi:10.1002/adfm.201203686

    Google Scholar 

  20. Sham AYW, Notley SM (2013) A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter 9:6645–6653

    Google Scholar 

  21. Shen H, Zhang LM, Liu M, Zhang ZJ (2012) Biomedical applications of graphene. Theranostics 2:283–294

    Google Scholar 

  22. Wattanaprayoon C (2011) Graphite exfoliation by supercritical carbon dioxide extraction. Michigan Technological University. MS Thesis, http://digitalcommons.mtu.edu/etds/8/, 2011

  23. Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989

    Google Scholar 

  24. Li LH, Zheng XL, Wang JJ, Sun Q, Xu Q (2013) Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustain Chem Eng 1:144–151

    Google Scholar 

  25. Allen MP, Tildesley DJ (1990) Computer simulation of liquids. Oxford University, Oxford

    Google Scholar 

  26. Tersoff J (1988) New empirical-approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000

    Article  Google Scholar 

  27. Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568

    Article  Google Scholar 

  28. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Google Scholar 

  29. Potoff JJ, Siepmann JI (2001) Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. Aiche J 47:1676–1682

    Google Scholar 

  30. Zhang ZG, Duan ZH (2005) An optimized molecular potential for carbon dioxide. J Chem Phys 122:214507

    Google Scholar 

  31. Ewald PP (1921) The calculation of optical and electrostatic grid potential. Ann Phys -Berlin 64:253–287

    Google Scholar 

  32. Bojan MJ, Steele WA (1987) Interactions of diatomic molecules with graphite. Langmuir 3:1123–1127

    Article  Google Scholar 

  33. Smith W, Forester TR (1996) DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graphics 14:136–141

    Article  Google Scholar 

  34. Berendsen HJC, Postma JPM, Gunsteren WFv, Nola AD, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Google Scholar 

  35. Andzelm J (2007) Materials studio. Chem World-Uk 4:72–72

    Google Scholar 

  36. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  Google Scholar 

  37. Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695

    Article  Google Scholar 

  38. Lim YI, Bhatia SK, Nguyen TX, Nicholson D (2010) Prediction of carbon dioxide permeability in carbon slit pores. J Membr Sci 355:186–199

    Article  Google Scholar 

Download references

Acknowledgements

Computer resources from Texas A&M Supercomputing Center and from Brazos Supercomputing Cluster at Texas A&M University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perla B. Balbuena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gomez-Ballesteros, J., Callejas-Tovar, A., Coelho, L., Balbuena, P. (2014). Molecular Dynamics Studies of Graphite Exfoliation Using Supercritical CO2 . In: Seminario, J. (eds) Design and Applications of Nanomaterials for Sensors. Challenges and Advances in Computational Chemistry and Physics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8848-9_6

Download citation

Publish with us

Policies and ethics