Skip to main content

Edge Damage on 500-Thousand-Year-Old Spear Tips from Kathu Pan 1, South Africa: The Combined Effects of Spear Use and Taphonomic Processes

  • Chapter
  • First Online:
Multidisciplinary Approaches to the Study of Stone Age Weaponry

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

This paper explores the effect of taphonomic processes on 500-thousand-year-old stone points from Kathu Pan 1, South Africa by statistically comparing archaeological edge damage distributions on the points to competing models of edge damage formation. We found that both taphonomic and behavioral processes influenced edge damage formation on the KP1 points, and the KP1 edge damage distribution is best explained by a combination of taphonomic effects and use as spear tips. The edge damage distribution method employed here advances studies of Stone Age weaponry because it can be used to quantitatively assess the effect of taphonomic and behavioral processes on stone tips without relying on subjective evaluations that attribute causation to individual wear features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose, S. H. (2010). Coevolution of composite-tool technology, constructive memory, and language: Implications for the evolution of modern human behavior. Current Anthropology, 51, S135–S147.

    Article  Google Scholar 

  • Bamforth, D. B. (1988). Investigating microwear polishes with blind tests: The Institute results in context. Journal of Archaeological Science, 15, 11–23.

    Article  Google Scholar 

  • Beaumont, P. B. (1990). Kathu Pan. In P. B. Beaumont & D. Morris (Eds.), Guide to archaeological sites in the Northern Cape (pp. 75–100). Kimberley: McGregor Museum.

    Google Scholar 

  • Beaumont, P. B. (2004). Kathu Pan and Kathu Townlands/Uitkoms. In D. Morris & P. B. Beaumont (Eds.), Archaeology in the Northern Cape: Some key sites (pp. 50–52). Kimberley: McGregor Museum.

    Google Scholar 

  • Beyries, S., & Plisson, H. (1998). Pointes ou outils triangulaires? Données fonctionnelles dans le Moustérien levantin. Paléorient, 24(1), 5–24.

    Article  Google Scholar 

  • Bird, C., Minichillo, T., & Marean, C. W. (2007). Edge damage distribution at the assemblage level on Middle Stone Age lithics: An image-based GIS approach. Journal of Archaeological Science, 34, 771–780.

    Article  Google Scholar 

  • Boëda, E., Geneste, J. M., Griggo, C., Mercier, N., Muhesen, S., Reyss, J., et al. (1999). A Levallois point embedded in the vertebra of a wild ass (Equus africanus): Hafting, projectiles and mousterian hunting weapons. Antiquity, 73, 394–402.

    Google Scholar 

  • Boyd, R., & Richerson, P. J. (2005). The origin and evolution of cultures. New York: Oxford University Press.

    Google Scholar 

  • Brooks, A., Nevell, L., Yellen, J., & Hartman, G. (2006). Projectile technologies of the African MSA: Implications for modern human origins. In E. Hovers & S. L. Kuhn (Eds.), Transitions before The Transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 233–255). New York: Springer.

    Chapter  Google Scholar 

  • Churchill, S. E. (1993). Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: Implications for hunting in the Palaeolithic and Mesolithic. Archeological Papers of the American Anthropological Association, 4, 11–24.

    Article  Google Scholar 

  • Crowther, A., & Haslam, M. (2007). Blind tests in microscopic residue analysis: Comments on Wadley et al. (2004). Journal of Archaeological Science, 34, 997–1000.

    Google Scholar 

  • Dibble, H., McPherron, S. P., Chase, P., Farrand, W. R., & Debenath, A. (2006). Taphonomy and the concept of Paleolithic cultures: The case of the Tayacian from Fontéchevade. PaleoAnthropology, 1, 1–21.

    Google Scholar 

  • Donahue, R. E., Murphy, M. L., & Robbins, L. H. (2004). Lithic microwear analysis of Middle Stone Age artifacts from White Paintings Rock Shelter, Botswana. Journal of Field Archaeology, 29, 155–163.

    Article  Google Scholar 

  • Gaudzinski-Windheuser, S. (2016). Hunting lesions in pleistocene and early Holocene European bone assemblages and their implications for our knowledge on the use and timing of lithic projectile technology. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 273–286). Dordrecht: Springer.

    Google Scholar 

  • Grace, R. (1989). Interpreting the function of stone tools: The quantification and computerization of microwear analysis. Oxford: BAR.

    Google Scholar 

  • Hardy, B. L., Kay, M., Marks, A. E., & Monigal, K. (2001). Stone tool function at the Paleolithic sites of Starosele and Buran Kaya III, Crimea: Behavioral implications. Proceedings of the National Academy of Sciences of the United States of America, 98, 10972–10977.

    Article  Google Scholar 

  • Hill, K., Barton, M., & Hurtado, A. M. (2009). The emergence of human uniqueness: Characters underlying behavioral modernity. Evolutionary Anthropology, 18, 187–200.

    Article  Google Scholar 

  • Hutchings, K. (2016). When is a point a projectile? Morphology, impact fractures, scientific rigor, and the limits of inference. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of stone age weaponry (pp. 3–12). Dordrecht: Springer.

    Google Scholar 

  • Iovita, R. (2011). Shape variation in Aterian tanged tools and the origins of projectile technology: A morphometric perspective on stone tool function. PLoS ONE, 6, e29029.

    Article  Google Scholar 

  • Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology: Issues, News, and Reviews, 9, 156–185.

    Article  Google Scholar 

  • Keeley, L. H. (1980). Experimental determination of stone tool uses: A microwear analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuman, K. A. (1989). Florisbad and ≠ Gi: The contribution of open-air sites to the study of the Middle Stone Age in Southern Africa. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Levi Sala, I. (1986). Use wear and post-depositional surface modification: A word of caution. Journal of Archaeological Science, 13, 229–244.

    Article  Google Scholar 

  • Lombard, M. (2004). Distribution patterns of organic residues on Middle Stone Age points from Sibudu Cave, Kwazulu-Natal, South Africa. South African Archaeological Bulletin, 59, 37–44.

    Article  Google Scholar 

  • Lombard, M. (2005). Evidence of hunting and hafting during the Middle Stone Age at Sibudu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. Journal of Human Evolution, 48, 279–300.

    Article  Google Scholar 

  • Lombard, M. (2007). Evidence for change in Middle Stone Age hunting behaviors at Blombos Cave: Results of a macrofracture analysis. South African Archaeological Bulletin, 62, 62–67.

    Google Scholar 

  • Lombard, M., & Wadley, L. (2016). Hunting technologies during the Holwiesons Poort at Sibudu Cave: What they reveal about human cognition in KwaZulu-Natal, South Africa, between ~65 and 62 ka. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 77–100). Dordrecht: Springer.

    Google Scholar 

  • Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59, 425–443.

    Article  Google Scholar 

  • Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., et al. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.

    Article  Google Scholar 

  • Marlowe, F. (2005). Hunter-gatherers and human evolution. Evolutionary Anthropology, 14, 54–67.

    Article  Google Scholar 

  • Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., et al. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 1310–1318.

    Article  Google Scholar 

  • McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.

    Article  Google Scholar 

  • Milo, R. G. (1998). Evidence for hominid predation at Klasies River Mouth, South Africa, and its implications for the behaviour of early modern humans. Journal of Archaeological Science, 25, 99–133.

    Article  Google Scholar 

  • Nance, J. (1979). Fundamental statistical considerations in the study of microwear. In B. Hayden (Ed.), Lithic use-wear analysis (pp. 351–363). New York: Academic Press.

    Google Scholar 

  • Newcomer, M., Grace, R., & Unger-Hamilton, R. (1986). Investigating microwear polishes with blind tests. Journal of Archaeological Science, 13, 203–217.

    Article  Google Scholar 

  • Odell, G. H., & Odell-Vereecken, F. (1980). Verifying the reliability of lithic use-wear assessments by blind tests: The low-power approach. Journal of Field Archaeology, 7, 87–120.

    Google Scholar 

  • Pargeter, J. (2011). Assessing the macrofracture method for identifying Stone Age hunting weaponry. Journal of Archaeological Science, 38, 2882–2888.

    Article  Google Scholar 

  • Porat, N., Chazan, M., Grün, R., Aubert, M., Eisenmann, V., & Horwitz, L. K. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. Journal of Archaeological Science, 37, 269–283.

    Article  Google Scholar 

  • Rots, V. (2013). Insights into early Middle Palaeolithic tool use and hafting in Western Europe. The functional analysis of level IIa of the early Middle Palaeolithic site of Biache-Saint-Vaast (France). Journal of Archaeological Science, 40, 497–506.

    Article  Google Scholar 

  • Rots, V. (2016). Projectiles and hafting technology. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 167–185). Dordrecht: Springer.

    Google Scholar 

  • Rots, V., Van Peer, P., & Vermeersch, P. M. (2011). Aspects of tool production, use, and hafting in Palaeolithic assemblages from Northeast Africa. Journal of Human Evolution, 60, 637–664.

    Article  Google Scholar 

  • Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico.

    Google Scholar 

  • Schoville, B. J. (2010). Frequency and distribution of edge damage on Middle Stone Age lithic points, Pinnacle Point 13B, South Africa. Journal of Human Evolution, 59, 378–391.

    Article  Google Scholar 

  • Schoville, B. J. (2014). Testing a taphonomic predictive model of edge damage formation with Middle Stone Age points from Pinnacle Point cave 13B and Die Kelders cave 1, South Africa. Journal of Archaeological Science, 48, 84–95. doi:10.1016/j.jas.2013.10.002

    Google Scholar 

  • Schoville, B. J., & Brown, K. S. (2010). Comparing lithic assemblage edge damage distributions: Examples from the Late Pleistocene and preliminary experimental results vis-a-vis. Explorations in Anthropology, 10, 34–49.

    Google Scholar 

  • Semenov, S. A. (1964). Prehistoric technology (M. W. Thompson, Trans.). Bath: Adams and Dart.

    Google Scholar 

  • Shea, J. (1988). Spear points from the Middle Paleolithic of the Levant. Journal of Field Archaeology, 15, 441–450.

    Google Scholar 

  • Shea, J. (1992). Lithic microwear analysis in archaeology. Evolutionary Anthropology, 1, 143–150.

    Article  Google Scholar 

  • Shea, J., Davis, Z., & Brown, K. (2001). Experimental tests of Middle Palaeolithic spear points using a calibrated crossbow. Journal of Archaeological Science, 28, 807–816.

    Article  Google Scholar 

  • Shea, J., & Klenck, J. D. (1993). An experimental investigation of the effects of trampling on the results of lithic microwear analysis. Journal of Archaeological Science, 20, 175–194.

    Article  Google Scholar 

  • Shennan, S. J. (1997). Quantifying Archaeology (2nd ed.). Iowa City: University of Iowa Press.

    Google Scholar 

  • Sisk, M. L., & Shea, J. J. (2011). The African origin of complex projectile technology: An analysis using tip cross-sectional area and perimeter. International Journal of Evolutionary Biology, 2011. doi:10.4061/2011/968012

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York, NY: W.H. Freeman and Co.

    Google Scholar 

  • Thompson, E., Williams, H. M., & Minichillo, T. (2010). Middle and late Pleistocene Middle Stone Age lithic technology from Pinnacle point 13B (Mossel Bay, Western Cape Province, South Africa). Journal of Human Evolution, 59, 358–377.

    Article  Google Scholar 

  • Tringham, R., Cooper, G., Odell, G., Voytek, B., & Whitman, A. (1974). Experimentation in the formation of edge damage: A new approach to lithic analysis. Journal of Field Archaeology, 1, 171–196.

    Google Scholar 

  • Van Peer, P., Rots, V., & Vermeersch, P. M. (2008). A wasted effort at the quarry: Wear analysis and interpretation of an MSA lanceolate point from Taramsa-8, Egypt. PaleoAnthropology, 2008, 234–250.

    Google Scholar 

  • Villa, P., Boscato, P., Ranaldo, F., & Ronchitelli, A. (2009). Stone tools for the hunt: Points with impact scars from a Middle Paleolithic site in southern Italy. Journal of Archaeological Science, 36, 850–859.

    Article  Google Scholar 

  • Villa, P., Delagnes, A., & Wadley, L. (2005). A late Middle Stone Age artifact assemblage from Sibudu (KwaZulu-Natal): Comparisons with the European Middle Paleolithic. Journal of Archaeological Science, 32, 399–422.

    Article  Google Scholar 

  • Wadley, L., Hodgskiss, T., & Grant, M. (2009). Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proceedings of the National Academy of Sciences, 106, 9590–9594.

    Article  Google Scholar 

  • Wadley, L., & Lombard, M. (2007). Small things in perspective: The contribution of our blind tests to micro-residue studies on archaeological stone tools. Journal of Archaeological Science, 34, 1001–1010.

    Article  Google Scholar 

  • Wilkins, J. (2013). Technological change in the Early Middle Pleistocene: The onset of the Middle Stone Age at Kathu Pan 1, Northern Cape, South Africa. PhD dissertation, University of Toronto.

    Google Scholar 

  • Wilkins, J., & Chazan, M. (2012). Blade production ~500 thousand years ago at Kathu Pan 1, South Africa: Support for a multiple origins hypothesis for early Middle Pleistocene blade technologies. Journal of Archaeological Science, 39, 1883–1900.

    Article  Google Scholar 

  • Wilkins, J., Schoville, B. J., Brown, K. S., & Chazan, M. (2012). Evidence for early hafted hunting technology. Science, 338, 942–946.

    Article  Google Scholar 

  • Wynn, T., & Coolidge, F. L. (2011). The implications of the working memory model for the evolution of modern cognition. International Journal of Evolutionary Biology, 2011. doi:10.4061/2011/741357

    Google Scholar 

  • Yaroshevich, A., Zaidner, Y., & Weinstein-Evron, M. (2016). Projectile damage and point morphometry at the Early Middle Paleolithic Misliya Cave, Mount Carmel (Isral): Preliminary results and interpretations. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 119–134). Dordrecht: Springer.

    Google Scholar 

Download references

Acknowledgements

We thank Kyle S. Brown and Michael Chazan. This research was supported by a Social Sciences and Humanities Research Council Joseph-Armand Bombardier Canada Graduate Scholarship and funding from the University of Toronto to J.W. The McGregor Museum and the South African Heritage Resources Agency permitted temporary export of the points for study. Fieldwork at KP1 was supported by funding from the Social Sciences and Humanities Research Council of Canada to Michael Chazan. B.J.S. was funded by grants from NSF (BCS-0524087 and BCS-1138073) to Curtis Marean, the Hyde Family Foundations, and from the Institute of Human Origins at Arizona State University. We also thank D. Morris, N. Porat, L.K. Horwitz, C. Marean, and P. Beaumont. Any errors or inconsistencies are the sole responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Wilkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilkins, J., Schoville, B.J. (2016). Edge Damage on 500-Thousand-Year-Old Spear Tips from Kathu Pan 1, South Africa: The Combined Effects of Spear Use and Taphonomic Processes. In: Iovita, R., Sano, K. (eds) Multidisciplinary Approaches to the Study of Stone Age Weaponry. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7602-8_7

Download citation

Publish with us

Policies and ethics