Skip to main content

Survivorship Distributions in Experimental Spear Points: Implications for Tool Design and Assemblage Formation

  • Chapter
  • First Online:
Multidisciplinary Approaches to the Study of Stone Age Weaponry

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

How long points last is a performance attribute just as important as how well they fly and how deeply they penetrate targets. I analyze longevity data in a set of experimental North American Paleoindian Folsom spear-point replicas described by Hunzicker (Plains Anthropologist, 53:291–311, 2008) and previously analyzed for other purposes by Shott et al. (Lithic Technol, 32:203–217, 2007). My goal is to demonstrate the value, descriptively and analytically, of the evidence of longevity encoded in spear points and to consider how they can be estimated in archaeological assemblages. This is possible even though, unlike in experimental data, it cannot be observed or measured directly. At least dimly, results point the way toward the ability to estimate how long tools were used before they failed, how to estimate the distribution of this quantity for populations of points, and how to analyze such distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldenderfer, M. S. (1981). Creating assemblages by computer simulation: The development and uses of ABSIM. In J. Sabloff (Ed.), Simulation in archaeology (pp. 67–117). Albuquerque, NM: University of New Mexico.

    Google Scholar 

  • Ammerman, A., & Feldman, M. (1974). On the ‘making’ of an assemblage of stone tools. American Antiquity, 39, 610–616.

    Article  Google Scholar 

  • Austin, R., & Mitchell, S. (2010). Reconstructing the life histories of Bolen hafted bifaces from a north Florida archaeological site. Early Georgia, 38, 3–27.

    Article  Google Scholar 

  • Beck, C. (1998). Projectile point types as valid chronological units. In A. Ramenofsky & A. Steffen (Eds.), Unit issues in archaeology: Measuring time, space and material (pp. 21–40). Salt Lake City, UT: University of Utah Press.

    Google Scholar 

  • Binford, L. R. (1973). Interassemblage variability: The Mousterian and the ‘functional’ argument. In C. Renfrew (Ed.), The explanation of culture change: Models in prehistory (pp. 227–254). London: Duckworth.

    Google Scholar 

  • Buchanan, B. (2006). An analysis of Folsom projectile point resharpening using quantitative comparisons of form and allometry. Journal of Archaeological Science, 33, 185–199.

    Article  Google Scholar 

  • Burnett, P., & Otárola-Castillo, E. (2008). Knapping on an idea: Gauging experimental and archaeological projectile point morphological variability using geometric morphometrics. Paper presented at the 73rd Annual Meeting of the Society for American Archaeology, Vancouver.

    Google Scholar 

  • Cardillo, M. (2006). Temporal trends in the morphometric variation of the lithic projectile points during the Middle Holocene of southern Andes (Puna Region): A coevolutionary approach. In H. Muscio & G. E. José Lopez (Eds.), Theoretical and methodological issues in evolutionary archaeology: Toward an unified Darwinian paradigm (pp. 13–20). British Archaeological Reports, International Series 1915.

    Google Scholar 

  • Cattelain, P. (1997). Hunting during the Upper Paleolithic: Bow, spearthrower, or both? In H. Knecht (Ed.), Projectile technology (pp. 213–240). New York: Plenum.

    Chapter  Google Scholar 

  • Cheshier, J., & Kelly, R. L. (2006). Projectile point shape and durability: The effect of thickness-length. American Antiquity, 71, 353–363.

    Article  Google Scholar 

  • Clarkson, C. (2016). Testing archaeological approaches to determining past projectile delivery systems using ethnographic and experimental data. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 189–201). Dordrecht: Springer.

    Google Scholar 

  • Couch, J., Stropes, T. A., & Schroth, A. B. (1999). The effect of projectile point size on atlatl dart efficiency. Lithic Technology, 24, 27–37.

    Article  Google Scholar 

  • DeBoer, W. R. (1983). The archaeological record as preserved death assemblage. In A. Keene & J. Moore (Eds.), Archaeological hammers and theories (pp. 19–35). New York: Academic.

    Google Scholar 

  • Dorner, W. W. (1999). Using Microsoft Excel for Weibull analysis. Quality Digest, 19, 333–338.

    Google Scholar 

  • Elston, R. G. (1992). Modeling the economics and organization of lithic procurement. In R. Elston (Ed.), Archaeological investigations at Tosawihi, A Great Basin quarry (Vol. 1, pp. 31–47). Silver City, NV: Intermountain Research.

    Google Scholar 

  • Flegenheimer, N., Martínez, J. G., & Colombo, M. (2010). Un experimento de lanzamiento de puntas Cola de Pescado. In M. Berón, L. Luna, M. Bonomo, C. Montalvo, C. Aranda & M. Aizpitarte (Eds.), Mamül Mapu: Pasado y Presente desde la Arqueología Pampeana (pp. 215–232). Ayacucho, Argentina: Editorial Libros del Espinillo.

    Google Scholar 

  • Flenniken, J. J., & Raymond, A. W. (1986). Morphological projectile point typology: Replication, experimentation and technological analysis. American Antiquity, 51, 603–614.

    Article  Google Scholar 

  • Frison, G. C. (1989). Experimental use of Clovis weaponry and tools on African elephants. American Antiquity, 54, 766–784.

    Article  Google Scholar 

  • Fullagar, R. (2016). Uncertain evidence for weapons and craft tools: Functional investigations of Australian microliths. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 159–166). Dordrecht: Springer.

    Google Scholar 

  • Hiscock, P., & Tabrett, A. (2010). Generalization, inference and the quantification of lithic reduction. World Archaeology, 42, 545–561.

    Article  Google Scholar 

  • Huckell, B. B. (1982). The Denver Elephant Project: A report on experimentation with thrusting spears. Plains Anthropologist, 27, 217–224.

    Google Scholar 

  • Hughes, S. S. (1998). Getting to the point: Evolutionary change in prehistoric weaponry. Journal of Archaeological Method and Theory, 5, 345–408.

    Google Scholar 

  • Hunzicker, D. A. (2008). Folsom projectile technology: An experiment in design, effectiveness and efficiency. Plains Anthropologist, 53, 291–311.

    Article  Google Scholar 

  • Iovita, R. (2009). Ontogenetic scaling and lithic systematics: Method and application. Journal of Archaeological Science, 36, 1447–1457.

    Article  Google Scholar 

  • Iovita, R., Schöekeß, H., Gaudzinski-Windheuser, S., & Jäger, F. (2011). Controlled ballistic experiments with glass replicas of Levallois points. Manuscript on file, Römisch-Germanisches Zentralmuseum, Mainz, Germany.

    Google Scholar 

  • Iovita, R., Schönekeß, H., Gaudzinski-Windheuser, S., & Jäger, F. (2016). Identifying weapon delivery systems using macrofracture analysis and fracture propagation velocity: A controlled experiment. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 13–27). Dordrecht: Springer.

    Google Scholar 

  • Kuhn, S. L. (1994). A formal approach to the design and assembly of mobile toolkits. American Antiquity, 59, 426–442.

    Article  Google Scholar 

  • Kurtz, E. B. (1930). Life expectancy of physical property based on mortality laws. New York: Ronald.

    Google Scholar 

  • Langley, M. C. (2016). More to the point: Developing a multi-faceted approach to investigating the curation of Magdalenian osseous projectile points. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 229–244). Dordrecht: Springer.

    Google Scholar 

  • Lombard, M., & Pargeter, J. (2008). Hunting with Howiesons Poort segments: Pilot experimental study and the functional interpretation of archaeological tools. Journal of Archaeological Science, 35, 2523–2531.

    Article  Google Scholar 

  • McCool, J. I. (1998). Inference on the Weibull location parameter. Journal of Quality Technology, 30, 119–126.

    Google Scholar 

  • McCool, J. I. (2012). The Program Pivotal.exe. In J. McCool (Ed.), Using the Weibull distribution: Reliability, modeling, and inference (pp. 213–234). New York: Wiley. doi:10.1002/9781118351994

    Google Scholar 

  • Odell, G. H., & Cowan, F. (1986). Experiments with spears and arrows on animal targets. Journal of Field Archaeology, 13, 195–212.

    Google Scholar 

  • Parker, W. C., & Arnold, A. J. (1997). Species survivorship in Cenozoic planktonic foraminifera: A test of exponential and Weibull models. Palaios, 12, 3–12.

    Article  Google Scholar 

  • Pearl, R., & Miner, J. R. (1935). Experimental studies on the duration of life, XIV: The comparative mortality of certain lower organisms. Quarterly Review of Biology, 10, 60–79.

    Article  Google Scholar 

  • Pétillon, J.-M. (2016). Thirty years of experimental research on the breakage patterns of Stone Age osseous points. Overview, methodological problems and current perspectives. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 47–63). Dordrecht: Springer.

    Google Scholar 

  • Phan, L. D., & McCool, J. I. (2009). Exact confidence intervals for Weibull parameters and percentiles. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223, 387–394.

    Article  Google Scholar 

  • Pletcher, S. D., Khazaeli, A. A., & Curtsinger, J. W. (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. Journal of Gerontology, 55A, B381–B389.

    Google Scholar 

  • Ratto, N. (2003). Estrategias de caza y propiedades de registro arqueológico en la Puna de Chascuil (Dpto. de Tinogasta, Catamarca, Argentina). PhD dissertation, Depto. de Ciencias Antropológicas, Universidad de Buenos Aires, Argentina.

    Google Scholar 

  • ReliaSoft Corporation. (2011). iTools: Simple 2-parameter Weibull analysis. http://www.weibull.com/itools/. Accessed September 9, 2011.

  • Schiffer, M. B. (1976). Behavioral archaeology. New York: Academic.

    Google Scholar 

  • Sano, K., Denda, Y., & Oba, M. (2016). Experiments in fracture patterns and impact velocity with replica hunting weapons from Japan. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 29–46). Dordrecht: Springer.

    Google Scholar 

  • Shea, J. J., Brown, K., & Davis, Z. (2002). Controlled experiments with Middle Paleolithic spear points: Levallois points. In J. Mathieu (Ed.), Experimental archaeology: Replicating past objects, behaviors, and processes (pp. 55–72). BAR International Series 1035. Oxford, UK: Archaeopress.

    Google Scholar 

  • Shea, J., Davis, Z., & Brown, K. (2001). Experimental tests of Middle Palaeolithic spear points using a calibrated crossbow. Journal of Archaeological Science, 28, 807–816.

    Article  Google Scholar 

  • Shott, M. J. (1996). An exegesis of the curation concept. Journal of Anthropological Research, 52, 259–280.

    Article  Google Scholar 

  • Shott, M. J. (2002). Weibull estimation of uselife distribution in experimental spear-point data. Lithic Technology, 27, 93–109.

    Article  Google Scholar 

  • Shott, M. J. (2009). Stone-tool demography: Reduction distributions in North American Paleoindian tools. In S. Lycett & P. Chauhan (Eds.), New perspectives on old stones: Analytical approaches to Palaeolithic technologies (pp. 275–293). Dordrecht: Springer/Kluwer.

    Google Scholar 

  • Shott, M. J., Hunzicker, D. A., & Patten, B. (2007). Pattern and allometric measurement of reduction in experimental Folsom bifaces. Lithic Technology, 32, 203–217.

    Article  Google Scholar 

  • Shott, M. J., & Sillitoe, P. (2004). Modeling use-life distributions in archaeology using New Guinea Wola ethnographic data. American Antiquity, 69, 339–355.

    Article  Google Scholar 

  • Shott, M. J., & Sillitoe, P. (2005). Use life and curation in New Guinea cxperimental used flakes. Journal of Archaeological Science, 32, 653–663.

    Article  Google Scholar 

  • Shott, M. J., & Trail, B. W. (2010). Exploring new approaches to lithic analysis: Laser scanning and geometric morphometrics. Lithic Technology, 35, 195–220.

    Article  Google Scholar 

  • Sisk, M. L., & Shea, J. J. (2009). Experimental use and quantitative performance analysis of triangular flakes (Levallois points) used as arrowheads. Journal of Archaeological Science, 36, 2039–2047.

    Article  Google Scholar 

  • Smallwood, A. M. (2006). Use-wear analysis of the Clovis biface collection from the Gault site in Central Texas. Unpublished MA thesis, Texas A&M University, College Station, TX, USA.

    Google Scholar 

  • Surovell, T. A. (2009). Toward a behavioral ecology of lithic technology: Cases from Paleoindian archaeology. Tucson, AZ: University of Arizona.

    Google Scholar 

  • Truncer, J. J. (1990). Perkiomen points: A study in variability. In R. Moeller (Ed.), Experiments and observations on the terminal archaic of the Middle Atlantic Region (pp. 1–62). Bethlehem, CT: Archaeological Services.

    Google Scholar 

  • Waguespack, N. M., Surovell, T. A., Denoyer, A., Dallow, A., Savage, A., Hyneman, J., et al. (2009). Making a point: Wood- versus stone-tipped projectiles. Antiquity, 83, 786–800.

    Article  Google Scholar 

  • Wessa, P. (2008). Maximum-likelihood Weibull distribution fitting (v1.0.2) in Free Statistics Software (vt.1.23–45). http://www.wessa.net/rwasp_fitdistrweibull.wasp. Accessed September 8, 2011.

  • Wilhelmsen, K. H. (2001). Building the framework for an evolutionary explanation of projectile point variation: An example from the central Mississippi River Valley. In T. Hunt, C. Lipo & S. Sterling (Eds.), Posing questions for a scientific archaeology (pp. 97–144). Westport, CT: Bergin & Garvey.

    Google Scholar 

  • Wood, J. W., Holman, D. J., O’Connor, K. A., & Ferrell, R. J. (2002). Mortality models of paleodemography. In R. Hoppa & J. Vaupel (Eds.), Paleodemography: Age distributions from skeletal samples (pp. 129–168). Cambridge, UK: Cambridge University.

    Chapter  Google Scholar 

  • Woods, J. C. (1987). Manufacturing and use damage on pressure-flaked stone tools (M.A. thesis). Idaho State University.

    Google Scholar 

  • Yaroshevich, A., Kaufman, D., Nuzhnyy, D., Bar-Yosef, O., & Weinstein-Evron, M. (2010). Design and performance of microlith implemented projectiles during the Middle and the Late Epipaleolithic of the Levant: Experimental and archaeological evidence. Journal of Archaeological Science, 37, 368–388.

    Article  Google Scholar 

  • Yaroshevich, A., Zaidner, Y., & Weinstein-Evron, M. (2016). Projectile damage and point morphometry at the Early Middle Paleolithic Misliya Cave, Mount Carmel (Isral): Preliminary results and interpretations. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 119–134). Dordrecht: Springer.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Radu Iovita and Katsuhiro Sano for their kind invitation to participate in the conference “Stone Age Weaponry,” and to the Römisch-Germanisches Zentralmuseum, Forschungsinstitut für Archäologie, in Mainz, Germany. I thank David Hunzicker as well for generously sharing his data. Scott Pletcher provided WinModest and generously offered advice in its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Shott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shott, M.J. (2016). Survivorship Distributions in Experimental Spear Points: Implications for Tool Design and Assemblage Formation. In: Iovita, R., Sano, K. (eds) Multidisciplinary Approaches to the Study of Stone Age Weaponry. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7602-8_17

Download citation

Publish with us

Policies and ethics