Skip to main content

Will Tropical Rainforests Survive Climate Change?

  • Chapter
  • First Online:
Climate Change and Agriculture Worldwide

Abstract

Tropical forests account for over 50 % of the global forested area and forest carbon stock. Although the deforestation rate is tending to decline, forests are confronted with climate change, which could profoundly modify their functioning. The migration of species that took place during the Pleistocene is no longer possible because human activities have markedly altered tropical landscapes. Forest species will thus have to adapt (or not) particularly to the increased water stress. Forest management methods must incorporate new knowledge on the vulnerability of species and evolve in order to reduce potentially negative interactions between disturbances and the water deficit. A key challenge is to identify trade-offs between logging in water deficit situations and the increased forest fire risk. In drylands, factors related to climate change are meshed with other change factors, but innovations in the management of woodlands could ensure their long-term persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Including 383 ± 30 Pg C (45 %) in soils, 363 ± 28 Pg C (42 %) in living biomass, 73 ± 6 Pg C (8 %) in dead wood, and 43 ± 3 Pg C (5 %) in litter; 1 Pg (petagram) = 1 billiard (a million billion) grams.

  2. 2.

    http://www.coforchange.eu/products/policy_brief.

References

  • Asner GP, Loarie SR, Heyder U (2010) Combined effects of climate and land-use change on the future of humid tropical forests. Conserv Lett 3(6):395–403. 10.1111/j.1755-263X.2010.00133.x (consulté le 10 juillet 2014)

    Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Climate Change 2(3):182–185. http://www.nature.com/doifinder/10.1038/nclimate1354 (consulté le 30 avril 2014)

    Google Scholar 

  • Barbe LL, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J Hydrol 188:43–73

    Article  Google Scholar 

  • Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15(5):393–405. http://www.ncbi.nlm.nih.gov/pubmed/22435987 (consulté le 24 mars 2014)

    Google Scholar 

  • Bertrand A, Montagne P (2008) Domanialité, fiscalité et contrôle: la gouvernance locale contractuelle des ressources renouvelables dans un contexte de décentralisation (Niger, Mali et Madagascar). Mondes en développement, 2008/1 (141), pp 11–28

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755. http://www.ncbi.nlm.nih.gov/pubmed/23172141 (consulté le 26 mai 2014)

    Google Scholar 

  • Cochrane MA, Barber CP (2009) Climate change, human land use and future fires in the Amazon. Global Change Biol 15(3):601–612. 10.1111/j.1365-2486.2008.01786.x (consulté le 10 juillet 2014)

    Google Scholar 

  • D’Amato A, Bradford JB, Fraver S, Palik BJ (2013) Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl 23(8):1735–1742. http://www.esajournals.org/doi/abs/10.1890/13-0677.1 (consulté le 10 juillet 2014)

    Google Scholar 

  • Gazull L, Gautier D (2014) Woodfuel in a global change context. Wiley Interdisc Rev: Energy Environ 4:156–170

    Google Scholar 

  • Gonzalez P, Tucker C, Sy H (2012) Tree density and species decline in the African Sahel attributable to climate. J Arid Environ 78:55–64

    Article  Google Scholar 

  • Gourlet-Fleury S, Beina D, Fayolle A, Ouédraogo D-Y, Mortier F, Bénédet F, Closset-Kopp D, Decocq G (2013) Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. Forest Ecol Manage 304:322–332. http://linkinghub.elsevier.com/retrieve/pii/S0378112713003204 (consulté le 17 août 2014)

    Google Scholar 

  • Hiernaux P, Diarra L, Trichon V, Mougin E, Soumaguel N, Baup F (2009) Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J Hydrol 375(1–2):103–113

    Article  Google Scholar 

  • Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142. http://www.biogeosciences.net/9/5125/2012/ (consulté le 29 avril 2014)

    Google Scholar 

  • L’Hôte Y, Mahé G, Somé B, Triboulet JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. Hydrol Sci J 47(4):563–572

    Article  Google Scholar 

  • Liu K, Colinvaux P (1985) Forest changes in the Amazon basin during the last glacial maximum. Nature 318:556–557. http://www.nature.com/nature/journal/v318/n6046/abs/318556a0.html (consulté le 9 juillet 2014)

    Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc Lond B Biol Sci 359(1443):311–329. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693325&tool=pmcentrez&rendertype=abstract (consulté le 10 juillet 2014)

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172. http://www.ncbi.nlm.nih.gov/pubmed/18048654 (consulté le 23 janvier 2014)

    Google Scholar 

  • Maranz S (2009) Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. J Biogeogr 36(6):1181–1193

    Article  Google Scholar 

  • McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, et al (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. The New Phytologist 200(2):304–321. http://www.ncbi.nlm.nih.gov/pubmed/24004027 (consulté le 10 juillet 2014)

    Google Scholar 

  • Montagne P, Amadou O (2012) Rural districts and community forest management and the fight against poverty in Niger: The Household Energy Strategy—a forestry policy to supply urban areas with Household energy. Field Actions Science Reports (6), 14 p

    Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, Chichester

    Google Scholar 

  • Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88(9):2259–2269. http://www.ncbi.nlm.nih.gov/pubmed/17918404

    Google Scholar 

  • Nicholson SE (1993) An overview of African rainfall fluctuations of the last decade. J Clim 6(7):1463–1466

    Article  Google Scholar 

  • Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79(5):815–829

    Article  Google Scholar 

  • Ouédraogo D-Y, Mortier F, Gourlet-Fleury S, Freycon V, Picard N (2013) Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa (M. Turnbull, ed). J Ecol 101(6):1459–1470. http://doi.wiley.com/10.1111/1365-2745.12165 (consulté le 10 juillet 2014)

  • Ozer P, Erpicum M, Demarée G, Vandiepenbeeck M (2003) The Sahelian drought may have ended during the 1990s. Hydrol Sci J 48(3):489–492

    Article  Google Scholar 

  • Phillips OL, Aragão LE, Lewis SL, Fisher JB, Lloyd J, et al. (2009) Drought sensitivity of the Amazon rainforest. Science (New York) 323(5919):1344–1347. http://www.ncbi.nlm.nih.gov/pubmed/19265020 (consulté le 24 février 2014)

  • Puettmann KJ (2011) Silvicultural challenges and options in the context of global change: “simple” fixes and opportunities for new management approaches. J For 109:321–331

    Google Scholar 

  • Serre-Duhem C, Montagne P (2012) Contrôle forestier décentralisé: les expériences de Torodi au Niger et du Boeny à Madagascar. In: Valoriser les produits pour mieux conserver les forêts. 2. Comparaisons Madagascar, Niger et Mali, Antananarivo, CITE, pp 133–150

    Google Scholar 

  • Sherwood S, Fu Q (2014) Climate change. A drier future? Science (New York) 343(6172):737–739. http://www.ncbi.nlm.nih.gov/pubmed/24531959 (consulté le 10 juillet 2014)

    Google Scholar 

  • Taylor CM, Lambin EF, Stephenne N, Harding RJ, Essery RL (2002) The influence of land use change on climate in the Sahel. J Clim 15(24):3615–3629

    Article  Google Scholar 

  • Wagner F, Rossi V, Stahl C, Bonal D., Hérault B (2013) Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements. Biogeosciences 10(11):7307–7321. http://www.biogeosciences.net/10/7307/2013/ (consulté le 10 février 2014)

    Google Scholar 

  • Wagner F, Rossi V, Baraloto C, Bonal D, Stahl C, Hérault B (2014) Are commonly measured functional traits involved in tropical tree responses to climate? Int J Ecol 2014:1–10. http://www.hindawi.com/journals/ijecol/2014/389409/ (consulté le 26 juin 2014)

    Google Scholar 

  • Zelazowski P, Malhi Y, Huntingford C, Sitch S, Fisher JB (2011) Changes in the potential distribution of humid tropical forests on a warmer planet. Philos Trans Series A, Mathematical, physical, and engineering sciences, 369(1934):137–160. http://www.ncbi.nlm.nih.gov/pubmed/21115517 (consulté le 14 juillet 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Hérault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Éditions Quæ

About this chapter

Cite this chapter

Hérault, B., Gourlet-Fleury, S. (2016). Will Tropical Rainforests Survive Climate Change?. In: Torquebiau, E. (eds) Climate Change and Agriculture Worldwide. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7462-8_14

Download citation

Publish with us

Policies and ethics