Abstract
Quasi-hereditary algebras were introduced by L. Scott [S] in order to study highest weight categories arising in the representation theory of semisimple complex Lie algebras and algebraic groups, and important results were proved by Cline, Parshall and Scott (see [CPS1,2]). These algebras can be defined entirely in ring-theoretic terms; and they were studied from this point of view by Dlab and Ringel (see [DR1,2], [R1,2]) and by others. In particular it turns out that quasi-hereditary algebras are quite common.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Auslander, Representation theory of artin algebras I, Comm Algebra 1 (1974), 177–268
M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111–152
M. Auslander, S. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981)426–454
E. Cline, B. Parshall, L. Scott, Finite-dimensional algebras and highest weight categories, J. reine angew. Math. 391(1988)85–99
E. Cline, B. Parshall, L. Scott, Algebraic stratification in representation categories, J. Algebra 117(1988)504–521
de Concini, C., Procesi, C., A characteristic-free approach to invariant theory, Adv. Math. 21 (1976), 330–354
S. Donkin, On Schur algebras and related algebras I and II, J. Algebra 104(1986), 310–328 and 111 (1987), 354–364
S. Donkin, Rational representations of algebraic groups, Lecture Notes in Mathematics 1140 (Springer 1985 )
S. Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), 39–60
S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992), 389–401
V. Dlab, C.M. Ringel, Quasi-hereditary algebras, Ill. J. Math. 33 (1989), 280–291
V. Dlab, C.M. Ringel, The module theoretic approach to quasi-hereditary algebras, LMS Lecture Notes 168, “Representations of Algebras and related topics, ed. H. Tachikawa and S.Brenner, 1992 )
K. Erdmann, Schur algebras of finite type, Quarterly J. Math. Oxford 44 (1993), 17–41
J. Grabmeier, Unzerlegbare Moduln mit trivialer Youngquelle und Darstellungstheorie der Schuralgebra, Bayreuther Math. Schriften 20 (1985), 9–152
J.A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830, Springer 1980
J.A. Green, On certain subalgebras of the Schur algebra, J. Algebra 131 (1990) 265–280
J.A. Green, Combinatorics and the Schur algebra, preprint 1992
G.D. James, A. Kerber, The representation theory of the symmetric group, Encycl. of Math. 16, Addison and Wesley, 1981
G.D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics 682, Springer 1978
G.D. James, Representations of the symmetric groups over the field of characteristic 2, J. Algebra 38(1976)280–308
G.D. James, On the decomposition matrices of the symmetric groups I, J. Algebra 43(1976)42–44
G.D. James, Trivial source modules for symmetric groups, Arch. Math. 41 (1983), 294–300
J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius—Kerne, J. Reine Angew. Math. 317 (1980), 157–199
L.G. Kovacs, Some indecomposables for SL2, Research Report No. 11(1981), ANU, Canberra
O. Mathieu, Filtrations of G—modules, Ann. Sci. École Norm. Sup. (2)23(1990), 625–644
Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193(1986)113–146
B. Parshall, Finite dimensional algebras and algebraic groups, Contemp. Math. 82(1989)97–114
C.M. Ringel, The category of modules with good filtrations over a quasi—hereditary algebra has almost split sequences, Math. Z. 208 (1991), 209–225
C.M. Ringel, The category of good modules over a quasi—hereditary algebra (preprint no. 076, Bielefeld 1990 )
I. Schur, Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (1901) in I. Schur, Gesammelte Abhandlungen I, 1–70, Springer, Berlin 1973.
L. Scott, Simulating algebraic geometry with algebra, I: the algebraic theory of derived categories, Proc. Symp. Pure Math. 47(1987)
H. Weyl, The classical groups, Princeton Univ. Press, 1946
S. Xanthopoulos, On a question of Verma about indecomposable representations of algebraic groups and their Lie algebras, PhD thesis, London 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Erdmann, K. (1994). Symmetric Groups and Quasi-Hereditary Algebras. In: Dlab, V., Scott, L.L. (eds) Finite Dimensional Algebras and Related Topics. NATO ASI Series, vol 424. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1556-0_7
Download citation
DOI: https://doi.org/10.1007/978-94-017-1556-0_7
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-4377-1
Online ISBN: 978-94-017-1556-0
eBook Packages: Springer Book Archive