Skip to main content

Biodegradation of Aliphatic Polyesters

  • Chapter
Book cover Degradable Polymers

Abstract

Synthetic polymers appeared about sixty years ago and immediately medical people realized that this new class of materials was of interest for therapeutic applications. For example, isotonic aqueous solutions of polyvinylpyrrolidone (PVP) were used as plasma expander during World War II and although this compound was far from ideal, it stayed in use for years before substitutes appeared [1]. Since then, many polymers have been evaluated as candidate biomaterials [2]. However, only a number of them have reached the stage of clinical applications and commercial availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hassig and K. Stampfli, “Plasma substitutes: past and present”, Bibliotheca. Haemat., 33, 1–8, 1969.

    CAS  Google Scholar 

  2. D.V. Rosato, “Polymers, processes and properties of medical plastics: including markets and applications”, in “Biocompatible Polymers, Metals and Composites”, M. Szycher ed., Technomic. Publ. Co. Inc., Lancaster, chap. 45, 1019–1067, 1983.

    Google Scholar 

  3. E.L. Charles and N.Y. Buffalo, “Preparation of high molecular weight polyhydroxyacetic ester”, U.S. Patent 2,668, 162, 1954.

    Google Scholar 

  4. E.E. Schmitt and R.A. Polistina, “Surgical sutures”, U.S. Patent 3,297, 033, 1967.

    Google Scholar 

  5. E.J. Frazza and E.E. Schmitt, “A new absorbable suture”, J. Biomed. Mater. Res. Symposium, 1, 43–58, 1971.

    Article  Google Scholar 

  6. M. Vert, “Introductory remarks”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 1–3, 1992.

    Google Scholar 

  7. J. Heller, “Use of polymers in controlled drug release”, in “Biocompatible Polymers, Metals and Composites”, M. Szycher ed., Technomic. Publ. Co. Inc., Lancaster, chap. 24, 551–584, 1983.

    Google Scholar 

  8. R.S. Langer and N.A. Peppas, “Present and future applications of biomaterials in controlled drug delivery systems”, Biomaterials, 2, 201–214, 1981.

    Article  CAS  Google Scholar 

  9. R.S. Langer and N.A. Peppas, “Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review”, J. Macromol. Sci., REC. Macromol. Chem. Phys., C23, 61–126, 1983.

    Article  Google Scholar 

  10. D.K. Gilding, “Biodegradable polymers”, Biocompat. Clin. Impant. Mater., 2, 209232, 1981.

    Google Scholar 

  11. D.F. Williams, “Biodegradation of surgical polymers”, J. Mater. Sci., 17, 1233–1246, 1982.

    Article  CAS  Google Scholar 

  12. C.G. Pitt, T.A. Marks and A. Schindler, “Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists”, in “National Institute on Drug Abuse Research Monograph”, R.E. Willette and G. Barnett eds., Naltrexone, Vol. 28, 232–253, 1981.

    Google Scholar 

  13. R.D. Gilbert, V. Stannett, C.G. Pitt and A. Schindler, The design of biodegradable polymers: two approachs“, in ”Development in Polymer Degradation“, N. Grassie ed., Vol. 4, Applied Science Publishers, London, 259–293, 1982.

    Google Scholar 

  14. N.B. Graham and D.A. Wood, “Hydrogels and biodegradable polymers for the controlled delivery of drugs”, Polym. News, 8, 230–236, 1982.

    CAS  Google Scholar 

  15. G.J.L. Griffin, “Synthetic polymers and the living environment”, Pure Appl. Chem., 52, 399–407, 1980.

    CAS  Google Scholar 

  16. S.J. Holland, B.J. Tighe and P.L. Gould, “Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems”, J. Control. Rel., 4, 155–180, 1986.

    Article  CAS  Google Scholar 

  17. J.E. Guillet, H.X. Huber and J. Scott, “Studies of the biodegradation of synthetic plastics”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 73–92, 1992.

    Google Scholar 

  18. A.C. Albertsson and S. Karlsson, “Biodegradation and test methods for environmental and biomedical applications of polymers”, in “Degradable Materials: Perspectives, Issues and Opportunities”, S.A. Barenberg, J.L. Brash, R. Narayan and A.E. Redpath eds., CRC Press, Boca Raton, 263–286, 1990.

    Google Scholar 

  19. R.M. Ottenbrite, A.C. Albertsson and G. Scott, “Discussion on degradation terminology”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 73–92, 1992.

    Google Scholar 

  20. M. Vert, “Bioresorbable polyesters for bone surgery”, Makromol. Chem., Suppl. 5, 30–41, 1981.

    Article  CAS  Google Scholar 

  21. S.J. Huang, M. Bitritto, K.W. Leong, J. Pavlisko, M. Roby and J.R. Knox, “The effects of some structural variations on the biodegradability of step-growth polymers”, Stabilization and Degradation of Polymers (Am. Chem. Soc.), 17, 209–214, 1978.

    Google Scholar 

  22. M. Vert, S. Li, G. Spenlehauer and P. Guerin, “Bioresorbability and biocompatibility of aliphatic polyesters”, J. Mater. Sci., Materials in Medicine, 3, 432–446, 1992.

    Article  CAS  Google Scholar 

  23. J. Leray, M. Vert and D. Blanquaert, “Nouveau matériau de prothèse osseuse et son application”, French Patent Appl. 76 28163, 1976.

    Google Scholar 

  24. M. Vert, P. Christel, F. Chabot and J. Leray, “Bioresorbable plastic materials for bone surgery”, in “Macromolecular Biomaterials”, G.W. Hastings and P. Ducheyne eds., CRC press, Boca Raton, chap. 6, 119–142, 1984.

    Google Scholar 

  25. F. Chabot, M. Vert, S. Chapelle, P. Granger, “Configurational structures of lactic acid stereocopolymers as determined by C- H n.m.r.”, Polymer, 24, 53–60, 1983.

    Article  CAS  Google Scholar 

  26. M. Vert, A. Torres, S. Li, S. Roussos and H. Garreau, The Complexity of the Biodegradation of Poly(2-hydroxy acid)-type Aliphatic Polyesters“, in Y. Doi and K. Fukuda eds., Biodegradable Plastics and Polymers, Elsevier Sciences B.V., Amsterdam, 1994, pp. 11–23.

    Google Scholar 

  27. J.E. Kemnitzer, R. Gross and S.P. McCarthy, “Poly(ß-hydroxybutyrate) stereoisomers: a model study of the effects of stereochemical and morphological variables on polymer biological degradability”, in “Polymers as Biomaterials”, Macromolecules, 25, 5227–5234 (1992).

    Article  Google Scholar 

  28. D.F. Williams, “Enzyme-polymer interactions”, J. Bioeng., 1, 279–294, 1977.

    Google Scholar 

  29. D.F. Williams and E. Mort, “Enzyme accelerated hydrolysis of poly(glycolic caid)”, J. Bioeng., 1, 231–238, 1977.

    CAS  Google Scholar 

  30. J.B. Hellmann, R.J. Kelly and G.A. Higgins, “Polyglycolic acid sutures, laboratory and clinical evaluation of a new absorbable suture material”, Arch. Surg., 100, 486490, 1970.

    Google Scholar 

  31. T.N. Salthouse and B.F. Matlaga, “Polyglactin 910 suture absorption and the role of cellular enzymes”, Surg. Gynecol. Obstet., 142, 544–550, 1975.

    Google Scholar 

  32. J.M. Schakenraad, M.J. Hardonk, J Feijen, I. Molenaar and P. Neuwenhuis, “Enzymatic activity toward poly(L-lactic acid) implants”, J. Biomed. Mater. Res., 24, 529–545, 1990.

    Article  CAS  Google Scholar 

  33. H. Younes, P.R. Nataf, D. Cohn, Y.J. Appelbaum, G. Pizov and G. Uretzky, “Biodegradable PELA block copolymers: in vitro degradation and tissue reaction”, Biomat., Art. Cells, Art. Org., 16, 705–719, 1988.

    CAS  Google Scholar 

  34. G.E. Zaikov, “Quantitative aspects of polymer degradation in the living body”, JMSRev. Macromol. Chem. Phys., C25, 551–597, 1985.

    Google Scholar 

  35. D.F. Williams, “Enzyme hydrolysis of polylactic acid”, Eng. Med., 10, 5–7, 1981.

    Article  Google Scholar 

  36. S.L. Ashley and J.W. McGinity, “Enzyme-mediated drug release from poly(DLlactide) matrices”, Congr. Int. Technol. Pharm., 5, 195–204, 1989.

    CAS  Google Scholar 

  37. M.S. Reeve, S.P. McCarthy, M.J. Downey and R.A. Gross, “Polylactide stereochemistry: effects on enzymatic degradability”, Macromolecules, 27, 825–831 (1994).

    Article  CAS  Google Scholar 

  38. R.T. MacDonald, S.P. McCarthy and R.A. Gross, “Enzymatic degradation of poly(lactide): effects of chain stereochemistry and material crystallinity”, Macromolecules, 29, 7356–7361 (1996).

    Article  CAS  Google Scholar 

  39. S. Li and S.P. McCarthy, “Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s”, Macromolecules, 32, 4454–4456, 1999.

    Article  CAS  Google Scholar 

  40. S. Li, M. Tenon, H. Garreau, C. Braud and M. Vert, “Enzymatic degradation of stereocopolymers derived from L-, DL- and meso-lactides”, Polymer Degradation and Stability, 67, 85–90, 2000.

    Article  CAS  Google Scholar 

  41. L.J. Liu, S. Li, H. Garreau and M. Vert, “Selective enzymatic degradations of poly(Llactide) and poly($-caprolactone) blend films”, Biomacromolecules, 1, 350–359, 2000.

    Article  CAS  Google Scholar 

  42. S. Li, A. Girard, H. Garreau and M. Vert, “Enzymatic degradation of PLA stereocopolymers with predominant D-lactyl contents”, Polym. Degr. Stabl., 71, 6167, 2001.

    Google Scholar 

  43. A. Schindler and C.G. Pitt, “Biodegradable estomeric polyesters”, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 23, 111–112, 1982.

    CAS  Google Scholar 

  44. C.G. Pitt, R.W. Hendren, A. Schindler and S.C. Woodward, “The enzymatic surface erosion of aliphatic polyesters”, J. Control. Rel., 1, 3–14, 1984.

    Article  CAS  Google Scholar 

  45. M. Mochizuki, M. Hirano, Y. Kanmuri, K. Kudo and Y. Tokiwa, “Hydrolysis of polycaprolactone fibers by lipase: effects of draw ratio on enzymatic degradation”J. Appl. Polym. Sci., 55, 289–296 (1995).

    Article  CAS  Google Scholar 

  46. Gan Z., Yu D., Zhong Z., Liang Q. and Jing X., “Enzymatic degradations of poly(Ecaprolactone)/poly(DL-lactide) blends in phosphate buffer solution”, Polymer, 1999, 40, 2859–2863.

    Article  CAS  Google Scholar 

  47. S.C. Woodward, P.S. Brewer, F. Moatamed, A. Schindler and C.G. Pitt, “The intracellular degradation of poly(£-caprolactone)”, J. Biomed. Mater. Res., 19, 437444, 1985.

    Google Scholar 

  48. Y. Tabata and Y. Ikada, “Macrophase phogocytocis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo-and copolymers”, J. Biomed. Mater. Res., 22, 837–858, 1988.

    Article  CAS  Google Scholar 

  49. M.K. Cox, “The effect of material parameters on the properties and biodegradation of ‘BIOPOL”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 95100, 1992.

    Google Scholar 

  50. Y. Doi, Y. Kumagai, N. Tanahashi and K. Mukai, “Sturctural effects on biodegradation of microbial and synthetic poly(hydroxyalkanoates)”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 139–148, 1992.

    Google Scholar 

  51. Y. Doi, Y. Kanesawa, M. Kunioka and T. Saito, “Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3hydroxybutyrate-co-4-hydroxyvalerate)”, Macromolecules, 23, 26–31, 1990.

    Article  CAS  Google Scholar 

  52. Y. Kanesawa and Y. Doi, “Hydrolytic degradation of microbial poly(3hydroxybutyrate-co-3-hydroxyvalerate) fibres”, Makromol. Chem., Rapid Commun, 11, 679–682, 1990.

    Article  CAS  Google Scholar 

  53. Y. Kumagai and Y. Doi, “Enzymatic degradation of binary blends of microbial poly(3-hydroxyybutyrate) with enzymatically active polymers”, Polym. Degr. Stabl., 37, 253–256, 1992.

    Article  CAS  Google Scholar 

  54. D.F. Gilmore, N. Lotti, R.W. Lenz, R.C. Fuller and M. Scandola, “Biodegradability of blends of poly(hydroxybutyrate-co-hydroxyvalerate) with ester-substituted celluloses”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Alberts son, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 251254, 1992.

    Google Scholar 

  55. C.G. Pitt, “Non-microbial degradation of polyesters: mechanisms and modifications”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 7–19, 1992.

    Google Scholar 

  56. C.G. Pitt, M.M. Gratzel, G.L. Kimmel, J. Surles and A. Schindler, “Aliphatic polyesters. 2. The degradation of poly(DL-lactide), poly(c-caprolactone) and their copolymers in vivo”, Biomaterials, 2, 215–220, 1981.

    Article  CAS  Google Scholar 

  57. R.M. Ginde and R.K. Gupta, “In vitro chemical degradation of poly(glycolic acid) pellets and fibres”, J. Appl. Polym. Sci., 33, 2411–2429, 1987.

    Article  CAS  Google Scholar 

  58. M. Singh, A. Singh and G.P. Talwar, “Controlled delivery of diphtheria toxoid using biodegradable poly(D,L-lactide) microcapsules”, Pharm. Res., 8, 958–961, 1991.

    Article  CAS  Google Scholar 

  59. Y. Kimura, Y. Matsuzaki, H. Yamane and T. Kitao, “Preparation of block copoly(ester-ether) comprising poly(lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo”, Polymer, 30, 1342–1349, 1989.

    Article  CAS  Google Scholar 

  60. F.G. Hutchinson and B.J.A. Fun, “Biodegradable polymers for the sustained release of polypeptides”, Biochem. Soc. Trans., 13, 520–523, 1985.

    CAS  Google Scholar 

  61. L.M. Sanders, G.I. McRae, K.M. Vitale and B.A. Kell, “Controlled delivery of an LHRH analogue from biodegradable injectable microspheres”, J. Control. Rel., 2, 187195, 1985.

    Google Scholar 

  62. R.A. Kenley, M.O. Lee, T.R. Mahoney, II and L.M. Sanders, “Poly(lactide-coglycolide) decomposition kinetics in vivo and in vitro”, Macromolecules, 20, 2398 2403, 1987.

    Google Scholar 

  63. J.M. Schakenraad, P. Neuwenhuis, I. Molenaar, J. Helder, P.J. Dijkstra and J. Feijen, “In vivo and in vitro degradation of glycine/DL-lactic acid copolymers”, J. Biomed. Mater. Res., 23, 1271–1288, 1989.

    Article  CAS  Google Scholar 

  64. J. Helder, P.J. Dijkstra and J. Feijen, “In vitro degradation of glycine/DL-lactic acid copolymers”, J. Biomed. Mater. Res., 24, 1005–1020, 1990.

    Article  CAS  Google Scholar 

  65. S. Cohen, T. Yoshioka, M. Lucarelli, L.H. Hwang and R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres”, Pharm. Res., 8, 713–720, 1991.

    Article  CAS  Google Scholar 

  66. T.St. Pierre and E. Chiellini, “Biodegradability of synthetic polymers for medical and pharmaceutical applications: Part 2–Backbone hydrolysis”, J. Bioact. Comp. Polym., 2, 4–30, 1987.

    Article  Google Scholar 

  67. D.H. Lewis, “Controlled release of bioactive agents from lactide/ glycolide polymers”, Drugs Pharm. Sci., 45 (Biodegrad. Polym. Drug Delivery Syst.), 1–41, 1990.

    CAS  Google Scholar 

  68. S.J. Holland, A.M. Jollly, M. Yasin and B.J. Tighe, “Polymers for biodegradable medical devices. II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies”, Biomaterials, 8, 289–295, 1987.

    Article  CAS  Google Scholar 

  69. J.C. Knowles and G.W. Hastings, In vitro degradation of a PHB/PHV copolymer and a new technique for monitoring early surface changes“, Biomaterials, 12, 210–214, 1991.

    Google Scholar 

  70. S. Li, H. Garreau and M. Vert, “Bioresorbable polyesters of the glycolic/lactic type: in vitro investigations of the mechanism of degradation”, in “Preprints of Kunming International Symposium on Polymeric Biomaterials”, Kunming, China, May 3–7, 1988.

    Google Scholar 

  71. S. LI, “Etude de la degradation des poly(a-hydroxy acides) aliphatiques derives des acides lactique et glycolique en milieux aqueux modeles”, Ph.D. thesis, University of Rouen, France, 1989.

    Google Scholar 

  72. S. Li, H. Garreau and M. Vert, “Structure-property relationships in the case of the degradation of massive aliphatic poly(a-hydroxy acids) in aqueous media. Part 1: Poly(DL-lactic acid)”, J. Mater. Sci.: Materials in Medicine, 1, 123–130, 1990.

    Article  CAS  Google Scholar 

  73. S. Li, H. Garreau and M. Vert, “Structure-property relationships inthe case of the degradation of massive poly(a-hydroxy acids) in aqueous media. Part 2: Degradation of lactide/glycolide copolymers: PLA37.5GA25 and PLA75GA25”, J. Mater. Sci.: Materials in Medicine, 1, 131–139, 1990.

    Article  CAS  Google Scholar 

  74. S. Li, H. Garreau and M. Vert, “Structure-property relationships inthe case of the degradation of massive poly(a-hydroxy acids) in aqueous media. Part 3: Influence of the morphology of poly(L-lactic acid)”, J. Mater. Sci.: Materials in Medicine, 1, 198206, 1990.

    Google Scholar 

  75. M. Vert, S. Li and H. Garreau, “More about the degradation of LA/GA-derived matrices in aqueous media”, J. Control. Rel., 16, 15–26, 1991.

    Article  CAS  Google Scholar 

  76. M. Therin, P. Christel, S. Li, H. Garreau and M. Vert, “In vivo degradation of massive poly(a-hydroxy acids): validation of in vitro findings”, Biomaterials, 13, 594–600, 1992.

    Article  CAS  Google Scholar 

  77. M. Vert, S. Li and H. Garreau, New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids“, Clinical Materials, 10, 3–8, 1992.

    Article  CAS  Google Scholar 

  78. S. Li and M. Vert, “Crystalline oligomeric stereocomplex as intermediate compound in racemic poly(DL-lactic acid) degradation”, Polym. Inter., 33, 37–41, 1994.

    Article  CAS  Google Scholar 

  79. S. Li and M. Vert, “Morphological changes resulting from the hydrolytic degradation of stereocopolymers derived from L- and DL-lactides”, Macromolecules, 27, 31073110, 1994.

    Google Scholar 

  80. K.R. Huffman and D.J. Casey, “Effects of carboxylic end groups on hydrolysis of polyglycolic acid”, J. Polym. Sci.: Polym. Chem. Ed., 23, 1939–1954, 1985.

    Google Scholar 

  81. H. Fukuzaki, M. Yoshida, M. Asano and M. Kumakura, “Synthesis of copoly(D,Llactic acid) with relatively low molecular weight and in vitro degradation”, Eur. Polym. J., 25, 1019–1026, 1989.

    Article  CAS  Google Scholar 

  82. E.A. Schmitt, D.R. Flanagan, and R.J. Linhardt, “Importance of distinct water environments in the hydrolysis of poly(dl-lactide-co-glycolide)”, Macromolecules, 27, 743–748 (1994).

    Article  CAS  Google Scholar 

  83. S.A.M. Ali, P.J. Doherty and D.F. Williams, “Mechanism of polymer degradation in implantable devices. 2. Poly(DL-lactic acid)” J. Biomed. Mater. Res., 27, 1409–1418 (1993).

    Article  CAS  Google Scholar 

  84. X. Zhang, U.P. Wyss, D. Pichora and M.F.A. Goosen, “An investigation of poly(lactic acid) degradation ”, J. Bioact. Compat. Polym., 9, 80–100 (1994).

    Article  CAS  Google Scholar 

  85. H. Pistner, R. Gutwald, R. Ordung, J. Reuther and J. Milling, “Poly(L-lactide): a long term degradation study in vivo. Part I: biological results”, Biomaterials, 14, 671–677 (1993).

    Article  CAS  Google Scholar 

  86. H. Pistner, H. Stallforth, R. Gutwald, J. Milling, J. Reuther and C. Michel, “Poly(Llactide): a long term degradation study in vivo. Part II: physical-mechanical behavior of implants”, Biomaterials, 15, 439–450 (1994).

    Article  CAS  Google Scholar 

  87. H. Pistner, D.R. Bendix, J. Milling, J. Reuther, J. Reuther, “Poly(L-lactide): a long term degradation study in vivo. Part III: analytical characterization”, Biomaterials, 14, 291–298 (1993).

    Article  CAS  Google Scholar 

  88. T.G. Park, “Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition”, Biomaterials, 16, 1123–1130 (1995).

    Article  CAS  Google Scholar 

  89. S. Li, J.L. Espartero, P. Foch and M. Vert, “Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and e-caprolactone”, J. Biomater. Sci.: Polym. Ed., 8, 165–187. 1996

    Article  CAS  Google Scholar 

  90. A. Löfgren and A. Albertsson, “Copolymers of 1,5-dioxepan-2-one and L- or DLlactide: hydrolytic degradation behavior”, J. Appl. Polym. Sci., 52, 1327–1338 (1994).

    Article  Google Scholar 

  91. A.C. Albertsson and M. Eklund, “Influence of molecular structure on the degradation mechanism of degradable polymers: in vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride)”, J. Appl. Polym. Sci., 57, 87–103 (1995).

    Article  CAS  Google Scholar 

  92. H. Schliephake, D. Klosa and M. Rahlff, “Determination of the 3-D morphology of degradable biopolymer implants undergoing in vivo resorption ”, J. Biomed. Mater. Res., 27, 991–998 (1993).

    Article  CAS  Google Scholar 

  93. I. Grizzi, H. Garreau, S. Li and M. Vert, “Biodegradation of devices based on poly(DL-lactic acid): size-dependence”, Biomaterials, 16, 305–311, 1995.

    Article  CAS  Google Scholar 

  94. C.G. Pitt, F.I. Chasalow, Y.M. Hibionada, D.M. Klimas and A. Schindler, “Aliphatic polyesters. I. The degradation of poly(e-caprolactone) in vivo”, J. Appl. Polym. Sci., 26, 3779–3787, 1981.

    Article  CAS  Google Scholar 

  95. M. Vert, “Bioresorption Synthetic Polymers and Their Operation Field”, in G. Walenkamp ed., Biomaterials in Surgery, Georg Thieme Verlag, Stuttgart, 1998, pp. 97–101.

    Google Scholar 

  96. S. Li, “Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids”, J. Biomed. Mater. Res.: Appl. Biomat., 1999, 48, 342–353.

    Article  CAS  Google Scholar 

  97. S. Li and M. Vert, “Biodegradable polymers: polyesters ”, in The Encyclopedia of Controlled Drug Delivery, E. Mathiowitz ed., John Wiley Sons, 1999, pp. 71–93.

    Google Scholar 

  98. A. Torres, S. Roussos, S.Li and M. Vert, “Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers”, Applied and Environmental Microbiology, 62, 2393–2397, 1996.

    CAS  Google Scholar 

  99. A. Torres, S.M. Li, S. Roussos and M. Vert, “Degradation of L- and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida”, J. Environ. Polym. Degr., 4, 213–223, 1996.

    Article  CAS  Google Scholar 

  100. A. Torres, S.M. Li, S. Roussos and M. Vert, “Poly(lactic acid) degradation in soil or under controlled conditions”, J. Appl. Polym. Sci. 62, 2295–2302, 1996.

    Article  CAS  Google Scholar 

  101. P. Jarrett, C. Benedict, J.P. Bell, J.A. Cameron and S.J. Huang, “Mechanism of the biodegradation of polycaprolactone”, in “Polymers as Biomaterials”, S.W. Shalaby, A.S. Hoffman, B.D. Ratner and T.A. Horbett eds., Plenum Publ. Corp., 181–192, 1985.

    Google Scholar 

  102. F. Lefebvre, C. David and C. Vander Wauven, “Biodegradation of polycaprolactone by microorganisms from an industrial compost of household refuse”, Polym. Degr. Stab., 45, 347–353 (1994).

    Article  CAS  Google Scholar 

  103. S.I. Akahori and Z. Osawa, “Preparation and biodegradation of polycaprolactonepaper composites”, Polym. Degr. Stab., 45, 261–265 (1994).

    Article  CAS  Google Scholar 

  104. E.W. Fischer, H.J. Sterzel and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions”, Kolloid-Z. u. Z. Polymere, 251, 980–990, 1973.

    Article  CAS  Google Scholar 

  105. B.K. Carter and G.L. Wilkes, “Some morphological investigations on an absorbable copolyester biomaterial based on glycolic and lactiic acid”, in “Polymers as Biomaterials”, S.W. Shalaby, A.S. Hoffman, B.D. Ratner and T.A. Horbert eds., Plenum Press, New York, 67–92, 1984.

    Google Scholar 

  106. R.J. Fredericks, A.J. Melveger and L.J. Dolegiewtz, “Morphological and structural changes in a copolymer of glycolide and lactide occurring as a result of hydrolysis”, J. Polym. Sci.: Polym. Phys. Ed., 22, 57–66, 1984.

    Google Scholar 

  107. J.W. Leeslag, A.J. Pennings, R.R.M. Bos, F.R. Rozema and G. Boering, “Bioresorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation”, Biomaterials, 8, 311–314, 1987.

    Google Scholar 

  108. C.C.Chu, “Hydrolytic degradation of poly(glycolic acid): tensile strength and crystallinity study”, J. Appl. Polym. Sci., 26, 1727–1734, 1981.

    Google Scholar 

  109. C.C. Chu and N.D. Campbell, “Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture”, J. Biomed. Mater. Res., 417430, 1982.

    Google Scholar 

  110. A. Browning and C.C. Chu, “The effect of annealing treatments on the tensile properties and hydrolytic degradative properties of poly(glycolic acid) sutures”, J. Biomed. Mater. Res., 20, 613–632, 1986.

    Article  CAS  Google Scholar 

  111. A. Browning and C.C. Chu, “The effect of annealing treatments on the mechanical and degradative properties of poly(glycolic acid) sutures”, in “Proc. ACS Division of Polymeric Materials: Science and Engineering”, Vol. 53, Fall Meeting 1985, Am. Chem. Soc., Washington, DC, 510–514, 1985.

    Google Scholar 

  112. T. Nakamura, S. Hitomi, S. Watanabe, Y. Shimizu, K. Jamshidi, S.-H. Hyon and Y. Ikada, “Bioabsorption of polylactides with different molecular properties”, J. Biomed. Mater. Res., 23, 1115–1130, 1989.

    Article  CAS  Google Scholar 

  113. R.A. Miller, J.M. Brady and D.E. Cutright, “Dedradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios”, J. Biomed. Mater. Res., 11, 711–719, 1977.

    Article  CAS  Google Scholar 

  114. J.W. Leeslag, S. Gogolewski and A.J. Pennings, “Bioresorbable materials of poly(Llactide). V. Influence of secondary structure on the mechanical properties and hydrolyzability of poly(L-lactide) fibres produced by a dry-spinning method”, J. Biomed. Mater. Res., 29, 2829–2842, 1984.

    Google Scholar 

  115. U. Siemann, “The influence of water on the glass transition of poly(DL-lactic acid)”, Thermochemica Acta., 85, 513–516, 1985.

    Article  CAS  Google Scholar 

  116. Li, S.; Girod-Holland, S.; Vert, M. Hydrolytic degradation of poly(DL-lactic acid) in the presence of caffeine base. J. Control. Rel. 40: 41–53; 1996.

    Article  CAS  Google Scholar 

  117. D.W. Grijpma, A.J. Nijenhuis and A.J. Pennings, “Synthesis and hydrolytic degradation behaviour of high-molecular-weight L-lactide and glycolide copolymers”, Polymer, 31, 2201–2206, 1990.

    Article  CAS  Google Scholar 

  118. D.E. Cutright, B. Perez, J.D. Beasley, W.J. Larson and W.R. Posey, “Degration rates of polymers and copolymers of polylactic and polyglycolic acids”, Oral Surg., 37, 142–152, 1974.

    Article  CAS  Google Scholar 

  119. A.M. Reed and D.K. Gilding, “Biodegradable polymers for use in surgery–poly(glycolic)/poly(lactic acid) homo-and copolymers: 2. in vitro degradation”, Polymer, 22, 494–498, 1981.

    Article  CAS  Google Scholar 

  120. A.M. Reed and D.K. Gilding, “Biodegradable polymers for use in surgery–poly(glycolic)/poly(lactic acid) homo-and copolymers. 1”, Polymer, 20, 1459–1464, 1979.

    Article  Google Scholar 

  121. I. Kaetsu, M. Yoshida, M. Asano, H. Yamanaka, K. Imai, H. Yuasa, T. Mashimo, K. Suzuki, R. Katakai and M. Oya, “Biodegradable implant composites for local therapy”, J. Control. Rel., 6, 249–263, 1987.

    Article  CAS  Google Scholar 

  122. J.M. Zhu, Y.M. Shao, S.Z. Zhang and W.M. Sui, “Homopolymers and copolymers of glycolide and lactide”, Journal of China Textile University (Eng. Ed.), 8, 57–61, 1991.

    Google Scholar 

  123. Y. Ogawa, H. Okada, M. Yamamoto and T. Shimamoto, In vivo release profiles of leuprolide acetate from microcapsules prepared with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers“, Chem. Pharm. Bull., 36, 2576–2581, 1988.

    Google Scholar 

  124. S.S. Amarpreet and J.A. Hubbell, “Rapidly degraded terpolymers of dl-lactide, glycolide and e-caprolactone with increased hydrophilicity by copolymerization with polyethers”, J. Biomed. Mater. Res., 24, 1937–1411, 1990.

    Google Scholar 

  125. S.H. Hyon, K. Jamshidi and Y. Ikada, “Melt spinning of poly(L-lactide) and hydrolysis of the fibre in vitro”, in “Polymers as Biomaterials”, Plenum Press, S.W. Shalaby ed., New York, NY, 51–65, 1984.

    Google Scholar 

  126. D.C. Tunc, M.W. Rohovsky, B. Jadhav, W.B. Lehman, A. Strongwater and F. Kummer, “Evaluation of body absorbable bone fixation devices”, Polym. Mater. Sci. Eng., 53, 502–504, 1985.

    CAS  Google Scholar 

  127. D.C. Tunc and B. Jadhav, “Development of absorbable ultra-high-strength polylactide”, Polym. Mater. Sci. Eng., 59, 383–387, 1988.

    CAS  Google Scholar 

  128. J. Eitenmüller, G. Muhr, K.L. Gerlach and T. Schmickal, “New semi-rigid and bioabsorbable osteosynthesis devices with a high molecular weight polylactide (an experimental investigation)”, J. Bioact. Compat. Polym., 4, 215–241, 1989.

    Article  Google Scholar 

  129. M. Vert, F. Chabot, J. Leray and P.Christel, “Nouvelles pièces d’ostéosynthèse, leur préparation et leur application”, French Patent 78 29978, 1978.

    Google Scholar 

  130. A.S. Chawla and T.M.S. Chang, “In vivo degradation of poly(lactic acid) of different molecular weights”, Biomed. Med. Dev. Art. Org., 13, 153–162, 1985–86.

    Google Scholar 

  131. J. Mauduit, N. Bukh and M. Vert, “Gentamycin/poly(lactic cid) blends aimed at sustained release local antibiotic therapy administered per-operatively: III. The case of gentamycin sulfate in films of high and low molecular weight poly(DL-lactic acid)”, J. Control. Rel., 25, 43–49, 1993.

    Article  CAS  Google Scholar 

  132. A.K. Kwong, S. Chou, A.M. Sun, M.V. Sefton and M.F.A. Goosen, “In vitro and in vivo release of insulin from poly(lactic acid) microbeads and pellets”, J. Control. Rel., 4, 47–62, 1986.

    Article  CAS  Google Scholar 

  133. G.E. Visscher, J.E. Pearson, J.W. Fong, G.J. Argentieri, R.L. Robison and H.V. Maulding, “Effect of particle size on the in vitro and in vivo degradation rates of poly(DL-lactide-co-glycolide) microcapsules”, J. Biomed. Mater. Res., 22, 733–746, 1988.

    Article  CAS  Google Scholar 

  134. P. Törmälä, H.M. Mikkola, J. Vasenius, S. Vainionpaa and P. Rokkanen, “Strength retention of self-reinforced, absorbable polyglycolide rods in hydrolytic environment”, Angew. Makromol. Chem., 185–186, 293–302, 1991.

    Article  Google Scholar 

  135. J. Mauduit, N. Bukh and M. Vert, “Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively: II. The case of gentamycin sulfate in high molecular weight poly(DL-lactic acid) and poly(Llactic acid)”, J. Control. Rel., 23, 221–230, 1993.

    Article  CAS  Google Scholar 

  136. H. Zhu, Z.R. Shen, L.T. Wu and S.L. Yang, In vitro degradation of polylactide and poly(lactide-co-glycolide) microspheres“, J. Appl. Polym. Sci., 43, 2099–2106, 1991.

    Google Scholar 

  137. K.H. Lam, P. Nieuwenhuis, I. Molenaar, H. Esselbrugge, J.Feijen, P.J. Dijkstra and J.M. Schakenraad, “Biodegradation of porous versus non-porous poly(L-lactic acid) films”, J. Mater. Sci.: Mater. Med., 5, 181–189 (1994).

    Article  CAS  Google Scholar 

  138. A. Smith and I.M. Hunneyball, “Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration”, Inter. J. Pharm., 30, 215–220 (1986).

    Article  CAS  Google Scholar 

  139. M.J.D. Eenink, J. Feijen, J. Olijslager, J.H.M. Albers, J.C. Rieke and P.J. Greidanus, “biodegradable hollow fibers for the controlled release of hormones”, J. Control. Rel., 6, 225–247 (1987).

    Article  CAS  Google Scholar 

  140. H.V. Maulding, T.R. Tice, D.R. Cowsar, J.W. Fong, J.E. Pearson and J.P.tNazareno, “Biodegradable microcapsules: acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament”, J. Control. Rel., 3, 103–117, 1986.

    CAS  Google Scholar 

  141. H.V. Maulding, “Prolonged delivery of peptides by microcapsules”, J. Control. Rel., 6, 167–176 (1987).

    Article  CAS  Google Scholar 

  142. A. Kishida, S. Yoshioka, Y. Takeda and M. Uchiyama, “Formulation-assisted biodegradable polymer matrices”, Chem. Pharm. Bull., 37, 1954–1956, 1989.

    Article  CAS  Google Scholar 

  143. Y. Cha and C.C. Pitt, “A one-week subdermal delivery system for L-methadone based on biodegradable microcapsules”, J. Control. Rel., 7, 69–78, 1988.

    Article  CAS  Google Scholar 

  144. Y. Cha and C.C. Pitt, “The acceleration of degradation-controlled drug delivery from polyester microspheres”, J. Control. Rel., 8, 259–265, 1989.

    Article  CAS  Google Scholar 

  145. J.F. Fitzgerald and O.I. Corrigan, “Investigation of the mechanisms governing the release of levamisole from poly(DL-lactide-co-glycolide) delivery systems”, J. Control. Rel., 42, 125–132 (1996).

    Article  CAS  Google Scholar 

  146. R. Bodmeier, K.H. Oh and H. Chen, “The effectof the addition of low molecular weight poly(DL-lactide) on drug release from biodegradable poly(DL(-lactide) drug delivery systems”, Inter. J. Pharm., 51, 1–8 (1989).

    Article  CAS  Google Scholar 

  147. J. Mauduit, N. Bukh and M. Vert, “Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively: I. The case of gentamycin base and gentamycin sulfate in poly(DL-lactic acid) oligomers”, J. Control. Rel., 23, 209–220, 1993.

    Article  CAS  Google Scholar 

  148. C.C.P.M. Verheyen, C.P.A.T. Klein, J.M.A. De Blieckhogervorst, J.G.C. Wolke, C.A. Van Blitterswijn, K. De Groot, J. Mater. Sci.: Mater. Med., 4, 58–65 (1993).

    Article  CAS  Google Scholar 

  149. S. Li and M. Vert, “Hydrolytic degradation of coral/poly(DL-lactic acid) bioresorbable material”, J. Biomat. Sci.: Polym. Ed., 7, 817–827 (1996).

    Article  CAS  Google Scholar 

  150. Y. Zhang, S. Zale, L. Sawyer and H. Bernstein, “Effects of metal salts on poly(DLlactide-co-glycolide) polymer hydrolysis”, J. Biomed. Mater. Res., 34, 531–538 (1997).

    Article  CAS  Google Scholar 

  151. M.C. Gupta and V.G. Deshmukh, “Radiation effects on poly(lactic acid)”, Polymer, 24, 827–830, 1983.

    Article  CAS  Google Scholar 

  152. C.C. Chu, “Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery”, Polymer, 26, 591–594, 1985.

    Article  CAS  Google Scholar 

  153. D.C. Tsai, S.A. Howard, T.F. Hogan, C.J. Malanga, S.J. Kandzari and J.K.H. Ma, “Preparation and in vitro evaluation of polylactic acid-mitomycin C microcapsules”, J. Microencapsulation, 3, 181–193 (1986).

    Article  CAS  Google Scholar 

  154. G. Spenlehauer, M. Vert, J.P. Benoit and A. Boddaert, “In vitro and in vivo degradation of poly(DL-lactide/glycolide) type microspheres made by solvent evaporation method”, Biomaterials, 10, 557–563, 1989.

    Article  CAS  Google Scholar 

  155. C. Birkinshaw, M. Buggy, G.G. Henn and E. Jones, “Irradiation of poly(DLlactide)”, Polym. Degr. Stabl., 38, 249–253, 1992.

    Article  CAS  Google Scholar 

  156. C. Volland, M. Wolff and T. Kissel, “The influence of gamma-sterilization on captopril containing poly(DL-lactide-co-glycolide) microspheres ”, J. Control. Rel., 31, 293–305 (1992).

    Article  Google Scholar 

  157. C.C. Chu, “An in vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures”, J. Biomed. Mater. Res., 15, 19–27, 1981.

    Article  CAS  Google Scholar 

  158. C.0 Chu, “The in vitro degradation of poly(glycolic acid) sutures–effect of pH”, J. Biomed. Mater. Res., 15, 795–804, 1981.

    Google Scholar 

  159. C.C. Chu, “A comparison of the effect of pH on the biodegradation of two synthetic bioabsorbable sutures”, Ann. Surg., 195, 55–59, 1982.

    Article  CAS  Google Scholar 

  160. C.C. Chu, “The effect of pH on the in vitro degradation of poly(glycolide/lactide) copolymer absorbable sutures”, J. Biomed. Mater. Res., 16, 117–124, 1982.

    Article  CAS  Google Scholar 

  161. C.C. Chu and G. Moncrief, “An in vitro evaluation of the stability of mechanical properties of surgical suture materials in various pH conditions”, Ann. Surg., 198, 223–228, 1983.

    Article  CAS  Google Scholar 

  162. K. Makin, H. Ohshima and T. Kondo, “Mechanism of hydrolytic degradation of poly(L-lactide) microcapsules: effects of pH, ionic strength and buffer concentration”, J. Microencapsulation, 3, 203–212, 1986.

    Article  Google Scholar 

  163. N. Chegini, D.L. Hay, J.A. von Fraunhofer and B.J. Masterson, “A comparative scanning electron microscopic study on degradation of absorbable ligating clips in vivo and in vitro”, J. Biomed. Mater. Res., 22, 71–79, 1988.

    Article  CAS  Google Scholar 

  164. R. Suuronen, T. Pohjonen, R. Taurio, P. Tormala, L Wessman, K. Ronkka and S. Vainionpaa, “Strength retention of self-reinforced poly-L-lactide screws and plates: an in vivo and in vitro study”, J. Mater. Sci.: Materials in Medicine, 3, 426–431, 1992.

    Article  CAS  Google Scholar 

  165. Y. Ikada, S.-H. Hyon, K. Jamshidi, S. Higashi, T. Yamamura, Y. Katutani and T. Kitsugi, “Release of antibiotic from composites of hydroxyapatite and poly(lactic acid)”, J. Control. Rel., 2, 179–186, 1985.

    Article  CAS  Google Scholar 

  166. T. Yeya, H. Okada, Y. Ogawa and H. Toguchi, “Factors influencing the profiles of TRH release from copoly(d,l-lactic/glycolic acid) microspheres”, Inter. J. Pharm., 72, 199–205, 1991.

    Article  Google Scholar 

  167. C.G. Pitt and Z.W. Gu, “Modification of the rates of chain cleavage of poly(Ecaprolactone) and related polyesters in the solid state”, J. Control. Rel., 4, 283–292, 1987.

    Article  CAS  Google Scholar 

  168. H.L. Gabelnick, “Biodegradable implants: alternative approaches”, in “Advances in Humain Fertility and Reproductive Endocrinology: vol. 2, Long Acting Steroid Contraception”, Raven Press, New York, NY, 149–173, 1983.

    Google Scholar 

  169. R.D. Fields, F. Rodriguez and R.K. Finn, “Microbial degradation of polyesters: polycaprolactone degraded by P. pullulans”, J. Appl. Polym. Sci., 18, 3571–3579, 1974.

    Article  CAS  Google Scholar 

  170. C.X. Song, H.F. Sun and X.D. Feng, “Microspheres of biodegradable block copolymer for long acting controlled delivery of contraceptives”, Polym. J., 19, 485491, 1987.

    Google Scholar 

  171. Y.X. Li, “Synthesis and studies of the controlled drug release system of biodegradable polymers as carriers”, Ph.D. Thesis, Peking University, China, 1988.

    Google Scholar 

  172. H. Fukuzaki, M. Yoshida, M. Asano and M. Kumakura, T. Mashimo, H. Yuasa, K. Imai and H. Yamanaka, “Synthesis of low molecular weight copoly(L-lactiic acid/ecaprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers”, Polymer, 31, 2006–2014, 1990.

    Article  CAS  Google Scholar 

  173. D.W. Grijmpa, G.J. Zondervan and A.J. Pennings, “High molecular weight copolymers of L-lactide and c-caprolactone as biodegradable elastomeric implants materials”, Polym. Bull. 25, 327–333, 1991.

    Article  Google Scholar 

  174. Y. Cha and C.G. Pitt, The biodegradability of polyester blends“, Biomaterials, 11, 108–112, 1990.

    Article  CAS  Google Scholar 

  175. W. Von Korsatko, B. Wabnegg, G. Braunegg, R.M. Lafferty and F. Strempfl, “PolyD-(-)-3-hydroxybyttersäure (PHB)–ein biologisch abbaubarer Arzneistoffträger zur Liberations-verzögerung. 1. Mitt: Eintwicklung von parenteral applizierbaren Matrixtabletten zur Langzeitabgabe von Arzneistoffen”, Pharm. Ind., 42, 525–527, 1983.

    Google Scholar 

  176. N. Grassie, E.J. Murray and P.A. Holmes, The thermal degradation of poly(-(D)-bhydroxy butyric acid). Part 1. Identification and quantitative analysis of products“, Polym. Degr. Stab., 6, 47–61, 1984.

    Article  CAS  Google Scholar 

  177. N. Tanahashi and Y. Doi, “Thermal properties and stereoregularity of poly(3hydroxybutyrate) prepared from optically active b-butyrolactone with a zinc-based catalyst”, Macromolecules, 24, 5732–5733, 1991.

    Article  CAS  Google Scholar 

  178. S. Bleoembergen, D.A. Holden, T.L. Bluhm, G.K. Hamer and R.H. Marchessault, “Synthesis of crystalline b-hydroxybutyrate/ b-hydroxyvalerate copolyesters by coordination polymerization of b-lactones”, Macromolecules, 20, 3086–3089, 1987.

    Article  Google Scholar 

  179. J. Mergaert, A. Wouters, J. Swings and K. Kersters, “Microbial flora involved in the biodegradation of polyhydroxyalkanoates”, in “Biodegradable Polymers and Plastics”, M. Vert, J. Feijen, A. Albertsson, G. Scott and E. Chiellini eds., Royal Society of Chemistry, London, 95–100, 1992.

    Google Scholar 

  180. S. Yoshioka, A. Kishida, S. Izumikawa, Y. Aso and Y. Takeda, “Base-induced polymer hydrolysis in poly(b-hydroxybutyrate/ b-hydroxyvalerate) matrices”, J. Control. Rel., 16, 341–348, 1991.

    Article  CAS  Google Scholar 

  181. E.L. Welland, J. Stejny, A. Halter and A. Keller, “Selective degradation of chain folded single crystals of poly(f3-hydroxybutyrate)”, Polym. Commun., 30, 302–304, 1989.

    CAS  Google Scholar 

  182. P.A. Holmes, “Applications of PHB–a microbially produced biodegradable thermoplastic”, Phys. Technol., 16, 32–36, 1985.

    Article  CAS  Google Scholar 

  183. M.W. Stinson and J.M. Merrick, “Extracellular enzyme secretion by Pseudomonas lemoignei”, J Bacteriol., 119, 152–161, 1974.

    CAS  Google Scholar 

  184. Kronenthal, R.L. (1974) Biodegradable polymers in medicine and surgery, in Polymers in Medicine and Surgery, (eds R.L. Kronenthal, Z. User and E. Martin ), Plenum Press, New York, pp. 119–37.

    Google Scholar 

  185. Von Korsatko, W., Wabnegg, R., and Tillian, H.M. et al. Poly-D-(-)-3hydroxybyttersäure (PHB)–ein biologisch abbaubarer Arzneistoffträger zur Liberations-verzögerung. 3. Mitt: Gewebsverträglishkeitsstudien parenteral applizierbarer poly-D-(-)-3-hydroxybyttersäure-tabletten in Gewebekultur und in vivo, Pharm. Ind., 46, 952–954, 1984.

    CAS  Google Scholar 

  186. M.C. Bissery, F. Varelote and C. Thies, “In vitro and in vivo evaluation of CCNUloaded microspheres prepared from poly((±)lactide) and poly(ß-hydroxybutyrate)”, in “Microspheres and Drug Therapy. Pharmaceutical and Medical Aspects”, S.S. Davis, L. Ilium, J.G. McVie and E. Tomlinson eds., Elsevier Science Publisher, Amsterdam, 217–227, 1984.

    Google Scholar 

  187. N.D. Miller and D.F. Williams, “On the biodegradation of poly((3-hydroxybutyrate) (PHB) homopolymer and poly(ß-hydroxybutyrate/hydroxyvalerate) copolymers”, Biomaterials, 8, 129–137, 1987.

    Article  CAS  Google Scholar 

  188. T. Saito, K. Tomita, K. Juni and K. Ooba, “In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat”, Biomaterials, 12, 309–312, 1991.

    Article  CAS  Google Scholar 

  189. T.A. Augurt, M.N. Rosensaft and V.A. Perciaccante, “Surgical sutures of unsymmetrically substituted 1,4-dioxane-2,5-diones”, U.S. Patent 3,960, 152, 1976.

    Google Scholar 

  190. T.A. Augurt, M.N. Rosensaft and V.A. Perciaccante, “Polymers of unsymmetrically substituted 1,4-dioxane-2,5-diones”, U.S. Patent 4,033, 938, 1977.

    Google Scholar 

  191. M.N. Rosensaft and R.L. Webb, “Synthetic polyester surgical articles”, U.S. Patent 4,243,775, January 6, 1981.

    Google Scholar 

  192. M.N. Rosensaft and R.L. Webb, “Synthetic polyester surgical articles”, U.S. Patent 4,300,565, November 17, 1981.

    Google Scholar 

  193. A.R. Katz, D.P. Mukherjee, A.L. Kaganov and S. Gordon, “A new synthetic monofilament absorbable suture made from polytrimethylene carbonate”, Surg. Gynecol. Obstet., 161, 213–222, 1985

    CAS  Google Scholar 

  194. L.E. Sanz, J.A. Patterson, R. Kamath, G. Willett, S.W. Ahmed and A.B. Butterfield, “Comparison of MAXON suture with VICRYL, chromic catgut and PDS sutures in fascial closure in rats”, Obstet. Gynecol., 71, 418–422, 1988.

    CAS  Google Scholar 

  195. N. Doddi, C.C. Versfelt and D. Wasserman, “Synthetic absorbable surgical devices of polydioxanone”, U.S. Patent 4,052, 988, 1976.

    Google Scholar 

  196. J.A. Ray, N. Doddi, D. Regula, J.A. Williams and A. Melveger, “Polydioxanone (PDS), a novel monofilament synthetic absorbable suture”, Surg. Gynecol. Obstet., 153, 497–507, 1981.

    CAS  Google Scholar 

  197. H.P. Greisler, J. Ellinger, T.H. Schwarcz, J. Golan, R.M. Raymond and U.K. Dae, “Arterial regeneration over polydioxanone prostheses in the rabbit”, Arch. Surg., 122, 715–721, 1987.

    Article  CAS  Google Scholar 

  198. J. Cornah and J. Wallace, “Polydioxanone (PDS): a new material for internal suspension and fixation”, British Journal of Oral and Maxillofacial Surgery, 26, 250254, 1988.

    Google Scholar 

  199. B. Biardzka and J. Kaluzny, “Experimental and clinical investigations on the suitability of polydioxanone threads for cerclage of the eyeball”, Ophthalmologica (Basel), 197, 47–50, 1988.

    Article  CAS  Google Scholar 

  200. D.J.J.R. Schoetz, J.A. Coller and M.C. Veidenheimer, “Closure of abdominal wounds with polydioxanone: a prospective study”, Arch. Path. Lab. Med., 123, 7274, 1988.

    Google Scholar 

  201. T. Lizuka, P. Mikkonen, P. Paukku and C. Lindqvist, “Reconstruction of orbital floor with polydioxanone plate”, Inter. J. Oral Maxillofacial Surg., 20, 83–87, 1991.

    Article  Google Scholar 

  202. J.L. Myers, D.B. Campbell and J.A. Waldhausen, “The use of absorbable monofilament polydioxanone suture in pediatric cardiovascular operations”, Journal of Thoracic and Cardiovascular Surgery, 92, 771–775, 1986.

    CAS  Google Scholar 

  203. J.S. Miles, “Use of polydioxanone absorbable monofilament sutures in orthopeadic surgery”, Orthopeadics (Thorofare), 9, 1533–1536, 1986.

    CAS  Google Scholar 

  204. Ethicon Inc., “Absorbable polymer-drug compositions”, U.K. Patent 1,573, 459, 1980.

    Google Scholar 

  205. C.J. Schaefer, P.M. Colombani and G.W. Geelhoel, “Absorbable ligating clips”, Surg. Gynecol. Obstet., 154, 513–516, 1982.

    CAS  Google Scholar 

  206. J. Heller, R.F. Helwing, R.W Baker and M.W. Tuttle, “Controlled release of water soluble macromolecules from bioerodible\hydrogels”, Biomaterials, 4, 262–266, 1983.

    Article  CAS  Google Scholar 

  207. J. Heller, “Water soluble polyesters”, U.S. Patent 4,502, 976, 1985.

    Google Scholar 

  208. R.W Baker, M.W. Tuttle and R.F. Helwing, “Novel erodible polymers for the delivery of macromolecules”, Pharm. Technol., 26–30, Feb. 1984.

    Google Scholar 

  209. Y.K. Han, P.G. Edelman and S.J. Huang, “Synthesis and characterization of crosslinked polymers for biomedical composites”, J. Macromol. Sci.-Chem., A25, 847–869, 1988.

    Article  CAS  Google Scholar 

  210. A.S. Sawhney, C.P. Pathak and J.A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(a-hydroxyacid) diacrylate macromers”, Macromolecules, 26, 581–587, 1993.

    Article  CAS  Google Scholar 

  211. D. Pramanick and T.T. Ray, “Synthesis and biodegradation of copolyesters from citric acid and glycerol”, Polym. Bull., 19, 365–370, 1988.

    Article  CAS  Google Scholar 

  212. D. Pramanick and T.T. Ray, “Synthesis and biodegradation of polymers derived from aspartic acid”, Biomaterials, 8, 407–410, 1987.

    Article  CAS  Google Scholar 

  213. C. Braud, M. Vert and R.W. Lenz, “Polyelectrolytical properties of poly-f3-malic acid and its partially benzylated derivatives”, Proceedings of IUPAC 27th International Symposium on Macromolecules, Strasbourg, France, 1981 (Proceedings B5, Vol. II, 1086–1089 ).

    Google Scholar 

  214. C. Braud, C. Bunel, H. Garreau and M. Vert, “Evidence of the amphiphilic structure of partially hydrogenolyzed poly(3-malic acid benzyl ester)”, Polym. Bull., 9, 198203, 1983.

    Google Scholar 

  215. C. Braud and M. Vert, “Poly(ß-malic acid) as a source of polyvalent drug carriers: possible effects of hydrophobic substituents in aqueous media”, in “Polymers as Biomaterials”, S.W. Shalaby, A.S. Hoffman, B.D. Ratner and T.A. Horbetts eds., Plenum Publ. Co., 1–15, 1984.

    Google Scholar 

  216. A. Caron, C. Braud, C. Bunel and M. Vert, “Blocky structure of copolymers obtained by Pd/C-catalyzed hydrogenolysis of benzyl protecting groups as shown by sequence-selective hydrolytic degradation in poly(3-malic acid) derivatives”, Polymer, 31, 1797–1802, 1990.

    Article  CAS  Google Scholar 

  217. P. Guerin, M. Vert, C. Braud and R.W. Lenz, “Optically active poly(ß-malic acid),” Polym. Bull., 14, 187–193, 1985.

    Article  CAS  Google Scholar 

  218. C. Braud, C. Bunel and M. Vert, “Poly(f3-malic acid): a new polymeric drug carrier, evidence for degradation in vitro”, Polym. Bull., 13, 293–299, 1985.

    Article  CAS  Google Scholar 

  219. C. Braud, A. Caron, J. Francillette, P. Guerin and M. Vert, “Poly(3-malic acid) stereocopolymers: structural characteristics and degradation in aqueous media”, Polym. Prepr., (Am. Chem. Soc., Div. Polym. Chem.), 29, 600–601, 1988.

    CAS  Google Scholar 

  220. C. Braud and M. Vert, “Degradation of poly(f3-malic acid)–monitoring of oligomers formation by aqueous SEC and HPCE”, Polym. Bull., 29, 177–183, 1992

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, S., Vert, M. (2002). Biodegradation of Aliphatic Polyesters. In: Scott, G. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1217-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1217-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6091-4

  • Online ISBN: 978-94-017-1217-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics