Skip to main content

Zygotic Embryogenesis

Hormonal Control of Embryo Development

  • Chapter
Current Trends in the Embryology of Angiosperms

Abstract

The seed containing the embryo which will give rise to a new plant is structurally and physiologically equipped for its role as the dispersal unit and is well provided with food reserves to sustain the growing seedling until it establishes itself as a self-sufficient autotrophic organism. In higher plants, embryo development involves a complex sequence of events that can be divided into three overlapping phases. Initially, during histodifferentiation, the single-celled zygote undergoes extensive mitotic division, and the resultant cells differentiate to form the basic body plan of the embryo (see Chapter 9). Thereafter, maturation occurs largely in the absence of further cell divisions and is characterized by cell expansion and deposition of reserves in the storage tissues. Maturation is generally terminated by some degree of desiccation, which results in a gradual reduction in metabolism as water is lost from the seed tissues and the embryo passes into an apparently metabolically inactive, or quiescent state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerson, R.C. (1984a) Abscisic acid and precocious germination in soybeans, J Exp. Bot. 35, 414–421.

    Article  CAS  Google Scholar 

  • Ackerson, R.C. (1984b) Regulation of soybean embryogenesis by abcisic acid, J. Exp. Bot. 35, 403–413.

    Article  CAS  Google Scholar 

  • Bandurski, R.S., Cohen, J.D., Slovin, J.P. and Reinicke, D.M. (1995) Hormone biosynthesis and metabolism: Auxin biosynthesis and metabolism, in P.J. Davies (ed.), Plant Hormones, Physiology, Biochemistry and Molecular Biology, 2nd edition, Kluwer Academic Publishers, Dordrecht, pp. 39–65.

    Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B. and Feldmann, K.A. (1996) Arabidopsis AUXI gene: A permease-like regulator of root gravitropism, Science 273, 948–950.

    CAS  Google Scholar 

  • Berleth, T. and Jtirgens, G. (1993) The role of the MONOPTEROS gene in organizing the basal body region of the Arabidopsis embryo, Development 118, 575–587.

    Google Scholar 

  • Berry, T.A. and Bewley, J.D. (1992) A role for the surrounding fruit tissues in preventing germination of tomato (Lycopersicum esculentum) seeds. A consideration of the osmotic environment and abscisic acid, Plant PhysioL 100, 951–957.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, J.D. and Black, M. (1994) Seed development and maturation-hormones in the developing seed, in J.D. Bewley and M. Black (eds), Seeds: Physiology of Development and Germination, Plenum Press, New York, pp. 100–110

    Google Scholar 

  • Bewley, J.D. (1997) Seed germination and dormancy, Plant Cell 9, 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani, S.S. and Razdan, M.K. (1996) Plant Tissue Culture: Theory and Practice, A Revised Edition, Elsevier, Amsterdam.

    Google Scholar 

  • Binns, A.N. (1994) Cytokinin accumulation and action; biochemical, genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant MoL BioL 45, 197–209.

    Article  Google Scholar 

  • Bonetta, D. and McCourt, P. (1998) Genetic analysis of ABA signal transduction pathways, Trends Plant ScI 3, 231–235.

    Article  Google Scholar 

  • Brandstatter, I. and Kieber, J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis, Plant Cell 10, 1009–1019.

    PubMed  CAS  Google Scholar 

  • Burrows, W.J. and Carr, D.J. (1970) Cytokinin content of pea seeds during their growth and development, PhysioL Plant. 23, 1064–1070.

    Article  CAS  Google Scholar 

  • Chaudhury, A.M., Letham, S., Craig, S. and Dennis, E.S. (1993) Ampl-a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering, Plant 4, 907–916.

    CAS  Google Scholar 

  • Chen, C.-M., Jin, G., Andersen, B.R. and Ertl, J.R. (1993). Modulation of plant gene expression by cytokinins, Aust. J. Plant PhysioL 20, 609–619.

    Article  CAS  Google Scholar 

  • Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T. and Masson P.H. (1998) The Arabidopsis thaliana AGRAVITROPIC I gene encodes a component of the polar-auxin-transport efflux carrier, Proc. NatL Acad. Sci. USA 95, 15112–15117.

    Article  PubMed  CAS  Google Scholar 

  • Clouse, S.D. and Sasse J.M. (1998) Brassinosteroids: Essential regulators of plant growth and development, Annu. Rev. Plant Physiol.Plant MoL Biol. 49, 427–451.

    Article  PubMed  CAS  Google Scholar 

  • Coenen, C. and Lomax, T.L. (1997) Auxin-cytokinin interaction in higher plants: Old problems and new tools, Trends Plant Sci. 2, 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Creelman, R.A. and Mullet, J.E. (1997) Biosynthesis and action of jasmonates in plants, Annu. Rev. Plant PhysioL Plant MoL BioL 48, 355–381.

    Article  PubMed  CAS  Google Scholar 

  • Crowell, D.N. (1994) Cytokinin regulation of a soybean pollen allergen gene, Plant MoL BioL 25, 829–835.

    Article  PubMed  CAS  Google Scholar 

  • Crowell, D.N., Kadleck, A.T., John, M.C. and Amasino, R.M. (1990) Cytokinin-induced

    Google Scholar 

  • messenger RNAs in cultured soybean cells, Proc. Natl Acad. Sci. USA 87 8815–8819.

    Google Scholar 

  • Cuming, A.C., Ttiret, M. and Butler, W. (1996). Gene expression and embryonic maturation in cereals, in T.L. Wang and A. Cuming (eds), Embryogenesis the generation of a plant -Environmental plant biology series, BIOS Scientific Publishers Limited, Oxford, pp. 113132.

    Google Scholar 

  • Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., and McCourt, P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis, Science 273, 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Davey, J.E. and Van Staden, J. (1979) Cytokinin activity in Lupinus albus L., Plant Physiol. 63, 873–877.

    Article  PubMed  CAS  Google Scholar 

  • Dure, L., III., Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. (1989) Common amino acid sequence domains among the LEA proteins of higher plants, Plant Mol. Biol. 12, 475–486.

    CAS  Google Scholar 

  • Dure, L., III. (1993) The LEA proteins of higher plants, in D.P.S Verma (ed.), Control of Plant Gene Expression, CRC, Boca Raton, pp. 325–335.

    Google Scholar 

  • Ecker, J.R (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Eeuwens, C.J. and Schwabe, W.W. (1975) Growth regulators in developing pea seeds, J. Exp. Bot. 26, 1–14.

    Article  Google Scholar 

  • Emery, R., Leport, L., Barton, J.E., Turner, N.C. and Atkins, C.A (1998) Cis-isomers of cytokinins predominate in chickpea seeds throughout their development, Plant Physiol. 117, 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Faure, J.D., Jullien, M. and Caboche, M. (1994). Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism, Plant J. 5, 481–491.

    CAS  Google Scholar 

  • Faure, J.D., Vittorioso, P., Santoni, V., Fraisier, V., Prinsen, E., Barlier, I., Van Onckelen, H., Caboche, M. and Bellini, C. (1998) The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation, Development 125, 909–918.

    PubMed  CAS  Google Scholar 

  • Fischer, C. and Neuhaus, G. (1996) Influence of auxin on the establishment of bilateral symmetry in monocots, Plant J. 9, 659–669.

    Article  CAS  Google Scholar 

  • Fischer, C., Speth, V., Fleig-Eberenz, S. and Neuhaus, G. (1997) Induction of zygotic polyembryos in wheat: Influence of auxin polar transport, Plant Cell 9, 1767–1780.

    PubMed  CAS  Google Scholar 

  • Fry, S.C. and Wangermann, E. (1976) Polar transport of auxin through embryos, Cytology 77, 313–317.

    CAS  Google Scholar 

  • Gälweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K., (1998) Regulation of polar auxin transport by AtPINI in Arabidopsis vascular tissue, Science 282, 2226–2230.

    Article  PubMed  Google Scholar 

  • Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning, Plant Cell 4, 1251–1261.

    PubMed  CAS  Google Scholar 

  • Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N. and Giraudat, J. (1999) ABI I protein phosphatase 2C is a negative regulator of abscisic acid signalling, Plant Cell 11, 1897–1910.

    Google Scholar 

  • Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: Post-imbibition abscisic acid synthesis imposes dormancy maintenance, Planta 210, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan, M.J., Marcotte, W.R. and Quatrano, R.S. (1990) A leucine zipper protein that recognizes an abscisic acid response element, Science 250, 267–270.

    Article  PubMed  CAS  Google Scholar 

  • Hadfi, K., Speth, V. and Neuhaus, G. (1998) Auxin-induced developmental patterns in Brassica juncea embryos, Development 125, 879–887.

    PubMed  CAS  Google Scholar 

  • Hall, R.H. (1973) Cytokinins as a probe of developmental processes, Annu. Rev.Plant Physiol. 24, 415–444.

    Article  CAS  Google Scholar 

  • Hardtke, C.S. and Berleth, T. (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, EMBO J. 17, 1405–1411.

    CAS  Google Scholar 

  • Hare, P.D. and van Staden, J. (1997) The molecular basis of cytokinin action, Plant Growth Regul. 23, 41–78.

    Article  CAS  Google Scholar 

  • Hemerley, A.S., Ferreira, P., de Almeida Engler, J., Van Montagu, M., Engler, G. and 1nze, D. (1993) cdc2a expression in Arabidopsis is linked with competence for cell division, Plant Cell 5, 1711–1723.

    Google Scholar 

  • Hepler, P.K. and Wayne, R.O. (1985) Calcium and plant development, Annu. Rev. Plant Physiol. 36, 397–439.

    Article  CAS  Google Scholar 

  • Hoch, J.A. and Silhavy, T.J. (1995) Two Component Signal Transduction, ASM Press, Washington DC.

    Google Scholar 

  • Hole, D.J., Smith, J.D. and Cobb, B.G. (1989) Regulation of embryo dormancy by manipulation of abscisic acid in kernels and associated cob tissue of Zea mays L. cultured in vitro, Plant Physiol. 91, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki., T., Ueguchi, C. and Mizuno., T. (1998). Response regulators implicated in His-to-Asp phosphotransfer signalling in Arabidopsis, Proc. Natl Acad. Sci. USA 95, 2691–2696.

    Article  CAS  Google Scholar 

  • Jacobs, T.W. (1995) Cell cycle control, Annu. Rev. Plant Physiol. Plant MoL Biot 46, 317–339.

    Article  CAS  Google Scholar 

  • John, P.C.L., Zhang, K., Dong, C., Diederich, L. and Wightman, F. (1993) p34“Ic2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin, Aust. J. Plant Physiol. 20, 503–526.

    Google Scholar 

  • Jones-Held, S., VanDoren, M. and Lockwood, T. (1996) Brassinolide application to Lepidum sativum seeds and the effects on seedling growth, Plant Growth Regul. 15, 63–67.

    Article  CAS  Google Scholar 

  • Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction, Science 274, 982–985.

    Article  Google Scholar 

  • Kalcimoto, T. (1998) Cytokinin signalling, Curr. Opinion Plant BioL 1, 399–403.

    Article  Google Scholar 

  • Karssen, C.M., Brinkhorst-Van Der Swan, D.L.C., Breekland, A.E. and Koomneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana L. Heynh, Planta 157, 158–165.

    CAS  Google Scholar 

  • Kato, M., Mizuno, T., Shimizu, T. and Hakoshima, T. (1997) Insights into multistep phosphorelay from the crystal structure of the c-terminal HPt domain of ArcB, Cell 88, 717–723.

    Article  PubMed  CAS  Google Scholar 

  • Kende, H. (1993) Ethylene biosynthesis, Annu. Rev. Plant PhysioL Plant Mot BioL 44, 283–307.

    Article  CAS  Google Scholar 

  • Kermode, A.R (1990) Regulatory mechanisms involved in the transition from seed development to germination, Crit. Rev. Plant Sci. 9, 155–195.

    Article  CAS  Google Scholar 

  • Khan, A.A. (1982) Gibberellins and seed development, in A.A. Khan (ed), The Physiology and Biochemistry of Seed Development, Dormancy and Germination, Elsevier Biomedical, Amsterdam, pp. 111–135.

    Google Scholar 

  • Kieber, J.J. (1997) The ethylene response pathway in Arabidopsis, Annu. Rev. Plant Physiol. Plant Mol. BioL 48, 277–296.

    Article  PubMed  CAS  Google Scholar 

  • King, R.W. (1982) Abscisic acid in seed development, in A.A. Khan (ed.), The physiology and Biochemistry of Seed Development, Dormancy and Germination, Elsevier Biomedical Press, pp. 157–181.

    Google Scholar 

  • Koornneef, M., Hanhart, C.J., Hilhorst, H.W.M. and Karssen, C.M. (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana, Plant PhysioL 90, 463–469.

    CAS  Google Scholar 

  • Letham, D.S. (1973) Cytokinins from Zea mays, Phytochemistry 12, 2445–2455.

    Article  CAS  Google Scholar 

  • Letham, D.S. (1974) Regulator of cell division in plant tissue. XX. The cytokinins of coconut milk, Physiol. Plant 32, 66–70.

    Article  CAS  Google Scholar 

  • Leung, J., Bouvier-Durand, M., Morris, P.-C., Guerrier, D., Chefdor, F., and Giraudat, J. (1994) Arabidopsis ABA-response gene ABII: Feature of a calcium modulated protein phosphatase, Science 264, 1448–1452.

    CAS  Google Scholar 

  • Leung, J., Merlot, S. and Giraudat, J. (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE (ABI2) and ABII genes encode homologous protein phosphatase 2C involved in abscisic acid signal transduction, Plant Cell 9, 759–771.

    PubMed  CAS  Google Scholar 

  • Liu, C.-M., Xu, Z.-M. and Chua, N.-H. (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis, Plant Cell 5, 621630.

    Google Scholar 

  • Liu, C.-M and Meinke, D.W. (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development, Plant J. 16, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi, R., Bennici, A., Cionini, P.G., Aipi, A. and D’Amato, F. (1978) Embryo-suspensor relations in Phaseolus coccineus: Cytokinins during seed development, Planta 143, 59–62.

    Article  CAS  Google Scholar 

  • Luschnig, C., Gaxiola, R., Grisafi, P. and Fink, G.R. (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana, Genes Dev. 12, 2175–2187.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M. and Vasil, I.K. (1991) The viviparous-I developmental gene of maize encodes a novel transcriptional activator, Cell 66, 895–905.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, I.A., Konar, A. and Street, H.E. (1972) The cytokinins of cultured sycamore cells, New Phytol. 71, 621–631.

    Article  CAS  Google Scholar 

  • Marcotte, W.R., Russell, S.H. and Quatrano, R.S. (1989) Abscisic acid responsive sequence from the Em gene of wheat, Plant Cell 1, 969–976.

    PubMed  CAS  Google Scholar 

  • Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A. and Marion-Poll, A. (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana, EMBO J. 15, 2331–2342.

    CAS  Google Scholar 

  • Martin, T., Sotta, B., Jullien, M., Caboche, M. and Faure, J.-D. (1997) ZEA3: A negative

    Google Scholar 

  • modulator of cytokinin response in plant seedlings, Plant Physiol 114 1177–1185.

    Google Scholar 

  • Mayer, U., Büttner, G. and Jürgens, G. (1993) Apical-basal pattern formation in the

    Google Scholar 

  • Arabidopsis embryo: Studies on the role of the gnom gene, Development 117 149–162.

    Google Scholar 

  • Meyer, K., Leube, M.P., and Grill E. (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana, Science 264, 1452–1455.

    Article  PubMed  CAS  Google Scholar 

  • Michael, G. and Seiler-Kelbitsch, H. (1972) Cytokinin content and kernel size of barley grains as affected by environmental and genetic factors, Crop Sci. 12, 162–165.

    Article  Google Scholar 

  • Müller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry G., Bennett, M., Wisman, E. and Palme, K. (1998) AtPIN2 defines a locus of the Arabidopsis for root gravitropism control, EMBO J. 17, 6903–6911.

    Google Scholar 

  • Nambara, E., Naito, S., and McCourt, P. (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele, Plant J. 2, 435–441.

    Article  CAS  Google Scholar 

  • Nambara, E., Keith, K., McCourt, P. and Naito, S. (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana, Development 121, 629–636.

    CAS  Google Scholar 

  • Nesling, F.A.V. and Morris, D.A. (1979) Cytokinin levels and embryo abortion in interspecific Phaseolus crosses, Z. Pflanzenphysiol. 91, 345–358.

    CAS  Google Scholar 

  • Nishinari, N. and Syono, K. (1980) Changes in endogenous cytokinin levels in partially synchronized cultured tobacco cells, Plant Physiol. 65, 437–441.

    Article  PubMed  CAS  Google Scholar 

  • Ooms, J.J.J., Leon-Kloosterziel, K.M., Bartels, D., Koomeef, M. and Karsen C.M. (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants, Plant Physiol. 102, 1185–1191.

    PubMed  CAS  Google Scholar 

  • Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M. and Giraudat, J. (1994) Regulation of gene expression programs during seed development: roles of the ABI3 locus and of endogenous abscisic acid, Plant Cell 6, 1567–1582.

    PubMed  CAS  Google Scholar 

  • Parcy, F. and Giraudat, J. (1997) Interactions between the ABH and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues, Plant 11, 693–702.

    Article  CAS  Google Scholar 

  • Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H.P., Mtintz, K. and Conrad, U. (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch, EMBOI 16, 4489–4496.

    CAS  Google Scholar 

  • Plakidou-Dymock, S., Dymock, D. and Hooley, R. (1998) A higher plant seven transmembrane receptor that influences sensitivity to cytokinins, Curr. BioL 8, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Przemeck, G.K., Mattson, J., Hardtke, C.S., Sung, Z.R. and Berleth, T. (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta, 200, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J. A. (1975) Transport of indolacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport, New Phytol. 74, 163–172.

    Article  CAS  Google Scholar 

  • Rock, C.D. and Quatrano, R.S. (1995) The role of hormones during seed development, in P.J Davies (ed.), Plant Hormones, Physiology, Biochemistry and Molecular Biology, 2nd edition, Kluwer Academic Publishers, Dordrecht, pp 671–698.

    Google Scholar 

  • Rubery, P. H. and Sheldrake, A. R. (1974). Carrier-mediated auxin transport, Planta 188, 101–121.

    Article  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root, Cell 99, 463–472.

    Google Scholar 

  • Sakakibara, H., Suzuki, M., Talcei, K., Deji, A., Taniguchi, M. and Sugiyama, T. (1998) A response regulator homolog possibly involved in nitrogen signal transduction mediated by cytokinin in maize, Plant J. 14, 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, M.J. (1990) Cytokinin: Localized perception and response, in R.P. Pharis and S.B. Rood (eds.), Plant Growth Substances 1988, Springer-Verlag, Berlin pp 511–518.

    Google Scholar 

  • Saunders, M.J. and Hepler, P.K. (1981) Localization of membrane associated calcium following cytokinin treatment in Funaria using chlorotetracycline, Planta 152, 272–281.

    Article  Google Scholar 

  • Saunders, M.J. and Hepler, P.K. (1982) Calcium ionophore A23187 stimulates cytokinin-like mitosis in Funaria, Science 217, 943–945.

    Article  Google Scholar 

  • Schafer, W.R. and Rine, J. (1992) Protein prenylation: Gene, enzymes, targets and functions, Annu. Rev. Genet. 30, 209–237.

    Article  Google Scholar 

  • Schiavone, F. M. and Cooke, T. J. (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: Developmental effects of exogenous auxins and auxin transport inhibitors, Differentiation 21, 53–62.

    Article  CAS  Google Scholar 

  • Schmtilling, T., Schafer, S. and Romanov, G. (1997) Cytokinins as regulators of gene expression, PhysioL Plant. 100, 505–519.

    Article  Google Scholar 

  • Short, K.C. and Torrey, J.G. (1972) Cytokinin production in relation to the growth of pea-root callus tissue, Exp. Bot. 23, 1099–1105.

    Article  CAS  Google Scholar 

  • Skiver, K. and Mundy, J. (1990) Gene expression in response to abscisic acid and osmotic stress, Plant Cell 2, 503–512.

    Google Scholar 

  • Smalle, J. and Van Der Straeten, D. (1997) Ethylene and vegetative development, PhysioL Plant 100, 593–605.

    Article  CAS  Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A.H. (1995) A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif, Plant Cell 7, 85–103.

    PubMed  CAS  Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K. and Järgens, G. (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science 286, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Su, W. and Howell, S.H. (1992) A single genetic locus, Ckr I, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin, Plant Physiol. 99, 1569–1574.

    Article  PubMed  CAS  Google Scholar 

  • Summons, R.E., Entsch, B., Letham, D.S., Gollnow, B.I. and McLeod, J.K. (1980) Regulators of cell division in plant tissues. XXVIII. Metabolites of zeatin in sweet-corn kernels: Purifications and identifications, using high-performance liquid chromatography and chemical-ionization mass spectrometry, Planta 147, 422–434.

    Article  CAS  Google Scholar 

  • Swain, S.M., Reid, J.B., Ross, J.J. (1993) Seed development in Pisum–The Ih(I) allele reduces gibberellin levels in developing seeds, and increases seed abortion, Planta 191, 482–488.

    Article  CAS  Google Scholar 

  • Thomas, T.L. (1993). Gene expression during plant embryogenesis and germination: an overview, Plant Cell 5, 1401–1410.

    PubMed  CAS  Google Scholar 

  • Uggla, C., Moritz, T., Sandberg, G. and Sundberg, B. (1996) Auxin as positional signal in pattern formation in plants, Proc. Nail Acad. Sci. USA 93, 9282–9286.

    Article  CAS  Google Scholar 

  • Utsuno, K., Shikanai, T., Yamada, Y. and Hashimoto, T. (1998) AGR,an Agravitropic locus of Arabidopsis thaliana,encodes a novel membrane protein family member, Plant Cell Physiol 39, 1111–1118

    Google Scholar 

  • Van Staden, J. and Drewes, S.E. (1975) Identification of zeatin and zeatinribosides in coconut milk, Physiol. Plant. 34, 106–109.

    Article  Google Scholar 

  • Van Staden, J., Davey, J.E. and Brown, N.A.C. (1982) Cytokinins in seed development and germination, in A.A. Khan (ed.), The Physiology and Biochemistry of Seed Development, Dormancy and Germination, Elsevier Biomedical Press, Amsterdam, pp. 137–156.

    Google Scholar 

  • Walker-Simmons, M. (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars, Plant Physiol. 84, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Warren Wilson, J. and Warren Wilson, P.M. (1993). Mechanisms of auxin regulation of structural and physiological polarity in plants, tissues, cells and embryos, Aust. J. Plant Physiol. 20, 555–571.

    Article  Google Scholar 

  • Williamson, J.D. and Quatrano, R.S. (1988) ABA-regulation of two classes of embryo-specific sequences in mature wheat embryos, Plant Physiol. 86, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., Kuzma, J., Marechal, E., Graeff, R., Lee, H.C., Foster, R. and Chua, N-H. (1997) Abscisic acid signalling through cyclic ADP-Ribose in plants, Science 278, 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T., Koba, S., Kim, S.K., Takatsuto, S., Ikekawa, N., Sakakibara, M., Okada, K., Mori, K. and Takahashi, N. (1987). Diverse structural variations of the brassinosteroids in Phaseolus vulgaris seed, Agric. Biol. Chem. 51, 1625–1631.

    Article  CAS  Google Scholar 

  • Yokota, T. (1997) The structure, biosynthesis and function of brassinosteroids, Trends Plant Sci. 2, 137–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer-Iglesias, C., Neuhaus, G. (2001). Zygotic Embryogenesis. In: Bhojwani, S.S., Soh, WY. (eds) Current Trends in the Embryology of Angiosperms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1203-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1203-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5679-5

  • Online ISBN: 978-94-017-1203-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics