Skip to main content

Halophytic characteristics and potential uses of Allenrolfea occidentalis

  • Chapter
Prospects for Saline Agriculture

Part of the book series: Tasks for vegetation science ((TAVS,volume 37))

Abstract

Allenrolfea occidentalis (S. Wats.) Kuntze is a C3 halophytic plant that grows in the arid environment of Western United States where halomorphic soil induces extreme osmotic stress with erratic and low precipitation during the growing period. This perennial species grows well in soils with 6% NaCl. It is one of the most salt tolerant plants in salt playas of the Great Basin in the Western United States. During the hot summer months the salt accumulates in high concentrations on the surface which prevents most plants except A. occidentalis from growing. The highest seed germination was obtained at a thermoperiod of high night (25°C) and high day (35°C). Most of the seeds were salt tolerant and some could still germinate at 600 mM NaCl. The seeds could recover from high salinity when placed in low salinity solutions. Several compounds, fusicoccin, ethephon, nitrate, thiourea, kinetin and gibberellic acid counteracted the inhibition produced by high salinity. Seeds germinated better in the light and at higher temperatures. Some of the growth regulating compounds could alleviate the effect of darkness. Best growth of A. occidentalis was obtained at a density of 1975 plants per m2 at 600 mM NaCl. Na+ and Clcontributed substantially to the dry mass of the plant. Net photosynthesis increased at lower salinity (200 mM NaCl). The pH of the soil in the salt playa of the Great Basin ranged from 7.3 to 8.3. The salinity ranged from 29 to 146 dSm −1 and soil moisture ranged from 9.2% to drought conditions. When salinity levels become lower, dry matter production increases and tissue water contents decrease. Allenrolfea occidentalis had greater growth and biomass production under saline conditions. Na+ and Cl ions were accumulated in plant tissue in much greater amounts than K+, Ca++ and Mg++. Good seed production occurred with A. occidentalis and a seed bank was present in the upper layers of the saline soil. The seed bank played a role in maintaining the population of A. occidentalis. Survival of young seedlings was dependant upon the soil moisture level during the hot summer period. The oil content of the seeds of A. occidentalis was about 20%. The fatty acids in the oil was 85% saturated and 15% unsaturated fatty acids. The biomass of A. occidentalis is a potential feed for animals. The wood biomass could be pressed into firewood and particle-board material. The use of halophytes in high salinity soil becomes an appealing choice to obtain some productivity from the land. Many factors are involved in selecting a useful halophyte such as how much salinity can the plant tolerate, can seeds germinate in saline conditions, is there a product of value from the plant?

The Great Basin area in the Western United States has no major drainage system and the runoff water tends to accumulate and evaporate in the valleys. Over a long period of time, the soil has become saline with certain areas developing into salt playa. This has provided selection pressure for the development of salt tolerant plants. We have evaluated one of these Great Basin halophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, P. 1990. Saltmarsh ecology. Cambridge University Press, New York, NY.

    Google Scholar 

  • Agami, M 1986. The effects of different soil water potentials, temperature and salinity on germination of seeds of the desert shrub Zygophyllum dumosum. Physiol. Plant. 67: 305–309.

    Google Scholar 

  • Albert, R. and M. Popp. 1977. Chemical composition of halophytes from the Neusiedler Lake region in Austria. Oecologia 25: 157–170.

    Article  Google Scholar 

  • Ayala, F. and J.W. O’Leary. 1995. Growth and physiology of Salicornia bigelovii Torr. at suboptimal salinity. Int. J. Plant Sci. 156: 197–205.

    Google Scholar 

  • Bewley, J.D. and M. Black. (1994). ‘Seeds: Physiology of Development and Germination. Plenum Press; New York.

    Google Scholar 

  • Breckle, S. -W. 1975. Ionengehalte halophiler Pflanzen Spaniens. Decheniana 122: 221–228.

    Google Scholar 

  • Clipson, N.J.W., A.D. Tomos, T.J. Flowers and R.G. Wyn Jones. 1985. Salt tolerance in the halophyte Suaeda maritima L. Dum.: The maintenance of turgor pressure and water-potential gradients in plants growing at different salinities. Planta 165: 392–396.

    Google Scholar 

  • Copeland, L. O. and M. B. McDonald. 1995. Seed Science and Technology. Chapman and Hall: New York.

    Google Scholar 

  • Corbineau, F. and D. Come. 1995. Control of seed germination and dormancy by the gaseous environment. In ‘Seed Development and Germination’ (Eds J. Kigel, and G. Galili, pp. 397–424. ( Marcel and Dekker Inc.: New York. )

    Google Scholar 

  • DeVillier, A.J., M.W. Van Rooyen., G.K. Theron., and H.A. van De Venter. 1994. Germination of three Namaqualand pioneer species, as influenced by salinity, temperature, and light. Seed Sci. and Technol. 22, 427–433.

    Google Scholar 

  • Esashi, Y., Y. Ohara., M. Okazaki and K. Hishinuma. 1979. Control of cocklebur seed germination by nitrogenous compounds: Nitrite, nitrate, hydroxylamine, thiourea, azide, and cyanide. Plant and Cell Physiol. 20, 349 361.

    Google Scholar 

  • Flowers, S. 1934. Vegetation of the Great Salt Lake region. Bot. Gaz. 95: 353–418.

    Google Scholar 

  • Flowers, T.J. and A.R. Yeo. 1986. Ion relations of plants under drought and salinity. Aust. J. Plant Physiol. 13: 75–91.

    Google Scholar 

  • Flowers, T.J., P.F. Troke, and A.R.Yeo. 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28: 89–121.

    Google Scholar 

  • Freeman, C.E. 1973. Germination responses of a Texas population of Octillo (Fouqieria splendens Englem.) to constant temperature, water stress, pH, and salinity. Am. Mid. Nat. 89, 252–256.

    Google Scholar 

  • Glenn, E.P. and J.W. O’Leary. 1984. Relationship between salt accumulation and water content of dicotyledenous halophytes. Plant, Cell and Environ. 7: 253–261.

    Google Scholar 

  • Glenn, E.P., R. Pfister, J.J. Brown, T.L. Thompson, and J.W. O’Leary. 1996. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am. J. Bot. 83: 997–1005.

    Google Scholar 

  • Gold, H. 1939. A preliminary study of salt effects in the germination of Allenrolfea occidentalis. Master thesis, University of Utah, USA.

    Google Scholar 

  • Gorham, J., L.L. Hughes and R.G. Wyn Jones. 1980. Chemical composition of salt marsh plants from YnysMon (Angelsey): the concepts of physiotypes. Plant, Cell and Environ. 3: 309–318.

    Google Scholar 

  • Gul, B. 1998. Ecophysiology and population biology of the perennial halophytic shrub Allenrolfea occidentalis (S. Wts) Kuntze (Chenopdiaceae) growing in a in a playa near Goshen, Northwestern, Utah. Ph. D. Dissertation, Brigham Young University, Utah.

    Google Scholar 

  • Gul, B. and D.J. Weber. 1998. Effect of dormancy relieving compounds on the seed germination of non-dormant Allenrolfea occidentalis under salinity stress. Ann. Bot. 82: 555–560.

    Google Scholar 

  • Gul, B and M. A. Khan. 1999. Effect of intraspecific competition and inundation regime on the growth of Arthrocnemum macrostachyum L. at a coastal marsh in Karachi, Pakistan. Pak. J. Bot. 31: 163–172.

    Google Scholar 

  • Gul, B. and D.J. Weber. 1999. Effect of salinity, light, and thermoperiod on the seed germination of Allenrolfea occidentalis. Can. J. Bot. 70: 1–7.

    Google Scholar 

  • Gutterman, Y. (1993). ‘Seed germination of desert plants.’ ( Springer-Verlag: Berlin. )

    Book  Google Scholar 

  • Gutterman, Y., R. Kamenetsky., M. van Rooyen. (1995). A comparative study of seed germination of two Allium species from different habitats in the Negev desert highlands. J. Arid Environ. 29: 305–315.

    Google Scholar 

  • Hansen, D.J., and D.J. Weber (1975). Environmental factors in relation to the salt content of Salicornia pacifica var. utahensis. Great Basin Nat. 35: 86–96.

    CAS  Google Scholar 

  • Ismail, A.M.A. (1990). Germination ecophysiology in population of Zygophyllum qatarenses Hadidi from contrasting habitats. J. Arid Environ. 18: 185–194.

    Google Scholar 

  • Jansen, R. and B. Parfitt. 1977. Allenrolfea maxicana Chenopodiaceae and its conspecificity with Allenrolfea occidentalis. Rhodora 79: 130–132.

    Google Scholar 

  • Jimenze, M.S., A.M. Gonzalez-Rodriguez, D. Morales, M.C. Cid, A.R. Socorro and M. Caballero. 1997. Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica 33: 291–301.

    Article  Google Scholar 

  • Kabar, K. (1987). Alleviation of salinity stress by plant growth regulators on seed germination. J. Plant Physiol. 128: 179–183.

    Article  CAS  Google Scholar 

  • Kabar, K. and S. Baltepe. (1990). Effect of kinetin and gibberellic acid in overcoming high temperature and salinity (NaCl) stresses on the germination of Barley and Lettuce seeds. Phyton 30: 65–74.

    CAS  Google Scholar 

  • Keiffer, C.H. and I.A. Ungar. 1997. The effects of density and salinity on shoot biomass and ion accumulation in five inland halophytic species. Can. J. Bot. 75: 96–107.

    Google Scholar 

  • Kepczynski, J. (1986). Inhibition of Amaranthus caudatus seed germination by polyethylene glycol-6000 and abscisic acid and its reversal by ethephon or 1 aminocyclopropane-l-carboxylic acid. Physiol Plant. 67, 588–591.

    Article  CAS  Google Scholar 

  • Kepczynski, J. and C.M. Karssen. (1985). Requirement for the action of endogenous ethylene during germination of non-dormant seeds of Amaranthus caudatus. Physiol. Plant. 63: 49–52.

    Google Scholar 

  • Kepczynski, J. and E. Kepczynska. (1997). Ethylene in seed dormancy and germination. Physiol. Plant. 101: 720–726.

    Google Scholar 

  • Keren, A. and M. Evenari. 1974. Some ecological aspects of distribution and germination of Pancratium mariti-mum L. Israel Journal of Botany 23: 202–215.

    Google Scholar 

  • Khan, M.A. (1991). Studies on germination of Cressa cretica. Pak. J. Weed Sci. Res. 4: 89–98

    Google Scholar 

  • Khan. M.A. and S. Aziz. 1998. Some aspects of salinity, density, and nutrient effects of Cressa cretica. J. Pl. Nut. 21: 769–784.

    Google Scholar 

  • Khan, M.A. and Y. Rizvi. 1994. Effect of salinity, temperature, and growth regulators on the germination and early seedling growth of Atriplex griffithii var. stocksii. Can. J. Bot. 72: 475–479.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1984. Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Bot. Gaz. 145: 487 494.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1985. The role of hormones in regulating the germination of polymorphic seeds and early seedling growth of Atriplex triangularis Willd. under saline conditions. Physiol. Plant. 63: 109–113.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1996a. Influence of salinity and temperature on the germination of Haloxylon recurvum. Ann. Bot. 78: 547–551.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1996b. Germination response of the subtropical annual halophyte Zygophyllum simplex. Seed Sci. and Technol. 25: 83–91.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1997a. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. Am. J. Bot. 84: 279–283.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1997b. Effects of light, salinity, and thermoperiod on the seed germination of halophytes. Can. J. Bot. 75: 835–841.

    Google Scholar 

  • Khan, M.A. and I.A. Ungar. 1997. Alleviation of seed dormancy in the desert forb Zygophyllum simplex L. from Pakistan. Ann. Bot. 80: 395–400.

    Google Scholar 

  • Khan, M.A., and D.J. Weber. 1986 ). Factors influencing seed germination in Salicornia pacifica var. utahensis. Am. J. Bot. 73: 1163–1167.

    Google Scholar 

  • Khan, M. A., N. Sankhla., D. J. Weber., and E. D. McArthur. 1987. Seed germination characteristics of Chrysothamnus nauseosus ssp viridulus ( Astereae, Asteraceae). Great Basin Nat. 47: 220–226.

    Google Scholar 

  • Khan, M.A., I.A.Ungar., and B. Gul. 1998. Action of osmotica and growth regulators in alleviating the effect of salinity on the germination of dimorphic seeds of Arthrocnemum indicum L. Int. J. Plant Sci. 150: 313–317.

    Google Scholar 

  • Khan, M.A., I.A. Ungar and A.M. Showalter. 1999. The effect of salinity on growth, ion content, and osmotic relations in Halopyrum mucronatum (L.) Stapf. J. Plant Nut. 22: 191–204.

    Google Scholar 

  • Khan, M.A., I.A. Ungar and A.M. Showalter. 2000a. Salt tolerance in the subtropical perennial halophyte Atriplex griffithii Moq. var. stocksii Boiss. Ann. Bot. 85: 225–232.

    Google Scholar 

  • Khan, M.A., I.A. Ungar, and A.M. Showalter. 2000b. Growth, water, and ion relationships of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid Environ. 45: 73–84.

    Google Scholar 

  • Khan, M.A., I.A. Ungar and A.M. Showalter. 2000c. Salt tolerance in the perennial halophyte, Haloxylon recurvum. Comm. Soil Sci. Plant Nut. 31: 2763–2774.

    Google Scholar 

  • Koller, D. (1957). Germination regulating mechanisms in some desert seeds. III. Atriplex dimorphostegia Kar. et. Kir. Ecology. 38: 1–13.

    Google Scholar 

  • Koller, D., A.M. Mayer, A. Poljakoff-Mayber and S. Klein. ( 1962. ). Seed germination. Ann. Rev. Plant hysiol. 13: 437–464.

    Google Scholar 

  • Larcher, W., J. Wagner and A. Thammathawom. 1990. Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J. Plant Physiol. 136: 92–102.

    Article  CAS  Google Scholar 

  • Mekkaoui, M.E., P. Monneveux. and P. Damania. 1989. Chlorophyll fluorescences as a predictive test for salt tolerance in cereals: preliminary results on durum wheat. Rachis. 8: 16–19.

    Google Scholar 

  • Monneveix, P., M.E. Mekkaoui and X. Xu. 1990. Physiological basis of salt tolerance in wheat. Chlorophyll fluorescence as a new tool for screening tolerant genotypes. pp. 1–33. In. Proceedings. Conference on Wheat Breeding. Prospects and Future Approaches. Bulgaria.

    Google Scholar 

  • Munns, R., H. Greenway, and G.O. Kirst. 1983. Halotolerant eukaryotes. pp. 59–83. IN: O.L. Lang, P.S. Nobel, C.B. Osmond, and H. Ziegler (ed.), Encyclopaedia of Plant Physiology. Springer-Verlag, Berlin.

    Google Scholar 

  • Naidoo, G., and K. Naicker. (1992). Seed germination in the coastal halophytes Triglochin bulbosa and Triglochin striata. Aquat. Bot. 42: 217–229.

    Google Scholar 

  • Naidoo, G.R. and R. Rughunanan. 1990. Salt tolerance in the succulent halophyte, Sarcocornia natalensis. J. Exp. Bot. 41: 497–502.

    Google Scholar 

  • Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant Cell and Environ. 20: 1193–1198.

    Article  CAS  Google Scholar 

  • Noor, M., and M.A. Khan, 1995. Factors affecting germination of summer and winter seeds of Halopyrum mucronatum under salt stress. In “Biology of Salt Tolerant Plants”. (Eds M.A. Khan and I.A. Ungar.) pp. 51–58. ( Department of Botany, University of Karachi: Pakistan ).

    Google Scholar 

  • Okusanya, O. T. 1977. The effect of seawater and temperature on the germination behavior of Crithmum maritimum. Physiol. Plant. 41: 265–267.

    Google Scholar 

  • Plummer, J.A. and D.T. David. 1995. The effect of temperature, light and gibberellic acid (GA3) on the germination of Australian everlasting Daisies ( Asteraceae, Tribe Inulae). Aust. J. Bot. 43: 93–102.

    Google Scholar 

  • Popp, M. 1994. Salt resistance in herbaceous halophytes and mangroves. pp. 416–429. In: Progress in Botany. (Eds.); H. Dietmar, U. Lunge, K. Esser, J.W. Kaderelt and M. Runge. Springer -Verlag, Berlin.

    Google Scholar 

  • Rao, V.S., N. Sankhla, and A.A. Khan. 1975. Additive and synergistic effects of kinetin and etherel on germination, thermodormancy and polyribosome formation in lettuce seeds. Plant Physiol. 56: 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, M.P., U.S. Rao and E.R.R. Iyengar. 1997. Carbon metabolism under salt stress. Pp. 159–190. In: Jaiwal, P.K., Singh, R.P. and Gulati, R. (eds.), Strategies for Improving Salt Tolerance in Higher Plants Science Publishers, Inc. New Hampshire.

    Google Scholar 

  • Rivers, W. G., and D. J. Weber. 1971. The influence of salinity and temperature on seed germination in Salicornia bigelovii. Physiol. Plant. 24: 73–75.

    Google Scholar 

  • Rozema, J. 1975. The influence of salinity, inundation and temperature on the germination of some halophytes and nonhalophytes. Oecol. Plant. 10: 341–353.

    Google Scholar 

  • Rozema, J. 1991. Growth, water and ion relationships of halophytic monocotyledonae and dicotyledonae: a unified concept. Aquat. Bot. 39: 17–33.

    Google Scholar 

  • SPSS Inc. 1996 SPSS: SPSS 7.0 for Windows 95. SPSS Inc. USA.

    Google Scholar 

  • Sharma, J.R. and D.O. Hall. 1998. The effect of salinity, photoinhibition and interaction of both on photosynthesis in barley. Pp. 571–578. In: Barber, J., R. Malkin (ed.), Techniques and New Development in Photosynthesis Research. Plenum Press, New York.

    Google Scholar 

  • Skougard, M.G. and J.D. Brotherson. 1979. Vegetational response to three environmental gradients in the salt playa near Goshen, Utah County, Utah. Great Basin Nat. 39: 44–58.

    Google Scholar 

  • Sutcliffe, M.A. and W. S. Whitehead. 1995. Role of ethylene and short chain saturated fatty acids in the smoke-stimulated germination of Cyclopea seeds. J. Plant Physiol. 145: 271–271.

    Article  CAS  Google Scholar 

  • Trent, J. D., R. R. Blank, and J. A. Young. 1997. Eco-physiology of the temperate desert halophytes: Allenrolfea occidentalis and Sarcobatus vermiculatus. Great Basin Nat. 57: 57–65.

    Google Scholar 

  • Ungar, I. A. 1984. Alleviation of seed dormancy in Spergularia marina. Bot. Gaz. 145: 33–36.

    Google Scholar 

  • Ungar, I. A. 1991. Ecophysiology of Vascular Halophytes. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ungar, I.A. 1995. Seed germination and seed bank ecology of halophytes. In ‘Seed Development and Germination. (Eds J. Kigel, and G. Galili.) pp. 599–627. ( Marcel and Dekker Inc: New York ).

    Google Scholar 

  • Woodell, S.R.J. 1985. Salinity and seed germination patterns in coastal plants. Vegetatio 61: 223–229.

    Article  Google Scholar 

  • Vincent, E.M., and E. H. Roberts. 1977. The interaction of light, nitrate, and alternating temperature in promoting the germination of dormant seeds of common weed species. Seed Sci. and Technol. 5: 659–670.

    CAS  Google Scholar 

  • Villiers, T.A. and P. F. Wareing. 1960. Interaction of a growth inhibitor and a natural germination stimulator in the dormancy of Fraxinus excelsior L. Nature. 185: 112–114.

    Article  Google Scholar 

  • Weber, D. J., H. P. Rasmussen, and W. M. Hess. 1977. Electron microprobe analyses of salt distribution in the halophyte Salicornia pacifica var. utahensis. Can. J. Bot. 55: 1516–1523.

    Google Scholar 

  • West, D.W. 1986. Stress physiology in trees-salinity. Acta Hort. 175: 322–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weber, D.J., Gul, B., Khan, M.A. (2002). Halophytic characteristics and potential uses of Allenrolfea occidentalis . In: Ahmad, R., Malik, K.A. (eds) Prospects for Saline Agriculture. Tasks for vegetation science, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0067-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0067-2_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6019-8

  • Online ISBN: 978-94-017-0067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics