Skip to main content

Total Positivity and the Shape of Curves

  • Chapter
Total Positivity and Its Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 359))

Abstract

We discuss why the variation diminishing property is useful when designing curves or constructing approximation operators from bases with totally positive collocation matrices. Various such bases are considered and a generalisation of the variation diminishing property is presented and applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, A. A., CONSURF part one: introduction to conic lifting tile, Comp.-aided Design 6 (1974), 243–249.

    Article  Google Scholar 

  2. Bernstein, S. W., Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Comm. Kharkov Math. Soc. 13 (1912), 1–2;.

    Google Scholar 

  3. Boehm, W., Smooth curves and surfaces, in Geometric Modeling, Applications and New Trends, G. Farin (ed.), SIAM, Philadelphia, 1987, 175–184.

    Google Scholar 

  4. Boehm, W., Rational geometric splines, Comp. Aided Geom. Design, 4 (1987) , 67–77.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bojanov, B., B-splines with Birkhoff knots, C. R. Acad. Bugare Sci. 40 (1987) , 11–14.

    MathSciNet  Google Scholar 

  6. de Boor, C., Splines as linear combinations of B-splines, a survey, in Approximation Theory II, G. G. Lorentz et al. (eds.), Academic Press, New York, 1976, 1–47.

    Google Scholar 

  7. de Boor, C. and A. Pinkus, The approximation of a totally positive band matrix by a strictly banded totally positive one, Linear Algebra Appl. 42 (1982), 81–98.

    Article  MathSciNet  MATH  Google Scholar 

  8. Carnicer, J. M., T. N. T. Goodman and J. M. Peña, A generalisation of the variation diminishing property, to appear Adv. Comp. Math.

    Google Scholar 

  9. Carnicer, J. M., and J. M. Peña, Shape preserving representations and optimality of the Bernstein basis, Adv. Comp. Math. 1 (1993), 173–196.

    Article  MATH  Google Scholar 

  10. Carnicer, J. M. and J. M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines, Comp. Aided Geom. Design 11 (1994), 633–654.

    Article  Google Scholar 

  11. Cavaretta, A. S., W. Dahmen, C. A. Micchelli and P. W. Smith, A factorisation theorem for banded matrices, Linear Algebra Appl. 39 (1981), 229–245.

    Article  MathSciNet  MATH  Google Scholar 

  12. Curry, H. B. and I. J. Schoenberg, Pólya frequency functions IV. The fundamental spline functions and their limits, J. d’Analyse Math. 17 (1966), 71–107.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahmen, W., C. A. Micchelli and H.-P. Seidel, Blossoming begets Bsplines built better by B-patches, Math. Comp. 59 (1992), 97–115.

    MathSciNet  MATH  Google Scholar 

  14. Dahmen, W., C. A. Micchelli and P. W. Smith, On factorisation of biinfinite totally positive block Toeplitz matrices, Rocky Mountain J. Math. 16 (1986), 335–364.

    Article  MathSciNet  MATH  Google Scholar 

  15. Derrienic, M. M., Sur l’approximation de fonctions intégrables sur [0, 1] par les polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 325–343.

    Article  MathSciNet  Google Scholar 

  16. Durrmeyer, J. L., Une formule d’inversion de la transformée de Laplace: Applications à le théorie des moments. Thèse de 3e cycle, Faculté des Sciences de l’Université de Paris, 1967.

    Google Scholar 

  17. Dyn, N. and C. A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves, Numer. Math. 54 (1988), 319–337.

    Article  MathSciNet  MATH  Google Scholar 

  18. Farin G., Visually C2 cubic splines, Comp.-aided Design 14 (1982), 137–139.

    Article  Google Scholar 

  19. Geise G., Uber beruhrende Kegelschnitte einer ebenen Kurve, ZAMM 42 (1962), 297–304.

    Article  MATH  Google Scholar 

  20. Goldman, R. N., Pólya’s urn model and computer aided geometric design, SIAM J. Algebraic Discrete Methods 6(1985), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldman, R. N. and B.A. Barsky, Some basic results on B-continuous functions and their application to the construction of geometrically continuous curves and surfaces, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 299–311.

    Google Scholar 

  22. Goldman, R. N. and C. A. Micchelli, Algebraic aspects of geometric continuity, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 313–332.

    Google Scholar 

  23. Goodman, T. N. T., Properties of β-splines, J. Approx. Theory 44 (1985), 132–153.

    Article  MathSciNet  MATH  Google Scholar 

  24. Goodman, T. N. T., Inflections on curves in two and three dimensions, Comp. Aided Geom. Design 8 (1991), 37–50.

    Article  MATH  Google Scholar 

  25. Goodman, T. N. T., Shape preserving representations, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 249–259.

    Google Scholar 

  26. Goodman, T. N. T., Constructing piecewise rational curves with Frenet frame continuity, Comp. Aided Geom. Design 7 (1990), 15–31.

    Article  MATH  Google Scholar 

  27. Goodman, T. N. T., Joining rational curves smoothly, Comp. Aided Geom. Design 8 (1991), 443d–464.

    Article  MATH  Google Scholar 

  28. Goodman, T. N. T., Two ways to construct a smooth piecewise rational curve, J. Approx. Theory 72 (1993), 69–86.

    Article  MathSciNet  MATH  Google Scholar 

  29. Goodman, T. N. T., Bernstein-Schoenberg operators, to appear in Mathematical Methods in Computer Aided Geometric Design 3.

    Google Scholar 

  30. Goodman, T. N. T. and S. L. Lee, Spline approximation operators of Bernstein-Scoenberg type in one and two variables, J. Approx. Theory 33 (1981) , 248–263.

    Article  MathSciNet  MATH  Google Scholar 

  31. Goodman, T. N. T. and C. A. Micchelli, Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl. 99 (1988), 225–258.

    Article  MathSciNet  MATH  Google Scholar 

  32. Goodman, T. N. T. and H. B. Said, Shape preserving properties of the generalised Ball basis, Comp. Aided Geom. Design 8 (1991), 115–121.

    Article  MathSciNet  MATH  Google Scholar 

  33. Goodman, T. N. T. and A. Sharma, A modified Bernstein-Schoenberg operator, in Constructive Theory of Functions ’87, Bl. Sendov (ed.), Bulgarian Academy of Sciences, Sofia, 1988, 166–173.

    Google Scholar 

  34. Goodman, T. N. T. and A. Sharma, Factorization of totally positive, symmetric, periodic, banded matrices, with applications, Linear Algebra Appl. 178 (1993), 85–107.

    Article  MathSciNet  MATH  Google Scholar 

  35. Goodman, T. N. T. and A. Sharma, A Bernstein-Schoenberg operator: shape preserving and limiting behaviour, to appear Canadian J. Math.

    Google Scholar 

  36. Gregory, J. A., Geometric continuity, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 353–371.

    Google Scholar 

  37. Karlin, S., Total Positivity, Stanford University Press, Stanford, 1968.

    MATH  Google Scholar 

  38. Kemperman, J. H. B., A Hurwitz matrix is totally positive SIAM J. Math. Anal. 13 (1982), 331–341.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lane, J. M. and R. F. Riesenfeld, A geometric proof of the variation diminishing property of B-spline approximation, J. Approx. Theory 37 (1983), 1–4.

    Article  MathSciNet  MATH  Google Scholar 

  40. Marsden, M. J., An identity for spline functions with applications to variation diminishing spline approximation, J. Approx. Theory 3 (1970), 7–49.

    Article  MathSciNet  MATH  Google Scholar 

  41. Said, H.B., A generalised Ball curve and its recursive algorithm, ACM Trans. Graphics 8 (1989), 360.

    Article  MATH  Google Scholar 

  42. Schoenberg, I.J., On variation diminishing approximation methods, in On Numerical Approximation, R. E. Langer (ed.), University of Wisconsin Press, Madison, 1959, 249–274.

    Google Scholar 

  43. Schoenberg, I. J., On spline functions, in Inequalities, O. Shisha (ed.), Academic Press, New York, 1967, 255–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goodman, T.N.T. (1996). Total Positivity and the Shape of Curves. In: Gasca, M., Micchelli, C.A. (eds) Total Positivity and Its Applications. Mathematics and Its Applications, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8674-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8674-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4667-3

  • Online ISBN: 978-94-015-8674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics