Skip to main content

Kinetic Analysis of Rotary F0F1-ATP Synthase

  • Chapter
Photosynthesis: Mechanisms and Effects

Abstract

F0F1-ATP synthase, which is found intrinsic to the membranes of bacteria, chloroplasts and mitochondria, uses proton-motive force to produce ATP from ADP and Pi (for a recent review see (1)). With respect to the chloroplastic ATP synthase the H+/ATP stoichiometry has been shown to be 4 (2–4). In a foregoing paper we presented the kinetic modeling of this enzyme, based on a comprehensive collection of experimental data (5). In the meantime, convincing evidence has been accumulated that during energy transduction the γ-subunit rotates relative to (αβ)3 (6,7). The structural basis for a rotary mechanism of energy transduction has been outlined by Junge et al. (8,9). According to this picture the rotor is composed of the subunit complex γεc12, while the stator is made up of the ensemble (αβ)3δb2a (see Fig. 1). Hypothetical models for torque generation by F0 which resemble closely have been presented by several authors (9-11). According to the proposal of Boyer (12) rotation of γ relative to (αβ)3 is assumed to induce the binding-change in F1, which is coupled with the synthesis and release of ATP. In (5) we introduced γ as an elastic element which accumulates rotational energy generated by F0 before it is transferred to F1. Now, we will consider the detailed kinetic modeling of a definitive rotary mechanism of F0F1-ATP synthase.

Scheme of rotatory F0F1-ATP synthase

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer, P.D. (1997) Ann. Rev. Biochem. 66, 717–749

    Article  CAS  PubMed  Google Scholar 

  2. Walraven, H.S., Strotmann, H., Schwarz, O and Rumberg, B. (1996) FEBS Lett. 379, 309–313

    Article  PubMed  Google Scholar 

  3. Berry, S. and Rumberg, B. (1996) Biochim. Biophys. Acta 1276, 51–56

    Article  Google Scholar 

  4. Pänke, O. and Rumberg, B. (1997) Biochim. Biophys. Acta 1322, 183–194

    Article  Google Scholar 

  5. Pänke, O. and Rumberg, B. (1996) FEBS Lett. 383, 196–200

    Article  PubMed  Google Scholar 

  6. Sabbert, D., Engelbrecht, S. and Junge, W. (1996) Nature 381, 623–626

    Article  CAS  PubMed  Google Scholar 

  7. Noji, H., Yasuda, R., Yoshida, M. and Kinosita, K. (1997) Nature 386, 299–302

    Article  CAS  PubMed  Google Scholar 

  8. Engelbrecht, S. and Junge, W. (1997) FEBS Lett. 414, 485–491

    Article  CAS  PubMed  Google Scholar 

  9. Junge, W., Lill, H. and Engelbrecht, S. (1997) Trends in Biochem. Sci. 22, 420–423

    CAS  Google Scholar 

  10. Vik, S.B. and Antonio, B.J. (1994) J. Biol. Chem. 269, 30364–30369

    CAS  PubMed  Google Scholar 

  11. Elston, T., Wang, H. and Oster, G. (1998) Nature 391, 510–513

    Article  CAS  PubMed  Google Scholar 

  12. Boyer, P.D. (1993) Biochim. Biophys. Acta 1140, 215–250

    Article  CAS  PubMed  Google Scholar 

  13. Huber, H.L., Rumberg, B. and Siggel, U. (1980) Ber. Bunsenges. Phys. Chem. 84, 1050–1055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rumberg, B., Pänke, O. (1998). Kinetic Analysis of Rotary F0F1-ATP Synthase. In: Garab, G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3953-3_386

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3953-3_386

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5547-2

  • Online ISBN: 978-94-011-3953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics